搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干条件下的弱散射样品ptychography iterative engine成像

余伟 田晓琳 何小亮 高淑梅 刘诚 朱健强

引用本文:
Citation:

部分相干条件下的弱散射样品ptychography iterative engine成像

余伟, 田晓琳, 何小亮, 高淑梅, 刘诚, 朱健强

Ptychographic iterative engine with partially coherent illumination for weakly scattering samples

Yu Wei, Tian Xiao-Lin, He Xiao-Liang, Gao Shu-Mei, Liu Cheng, Zhu Jian-Qiang
PDF
导出引用
  • 分析了照明相干性对ptychography iterative engine(PIE)成像技术的影响机理,指出利用零级衍射光范围内的衍射斑进行图像重建,可以避免由于部分相干性所引入的矛盾因素,并大幅度提高再现像质量,但再现像的对比度会明显降低. 而采用散射斑强度的高次方进行图像重建时,相位的倍增作用可使相干性不足所引起的对比度降低大部分得以弥补,从而大大降低PIE技术对光源相干性的依赖并拓展其可应用范围.
    As an expansion of coherent diffraction imaging, ptychographic iterative engine (PIE) not only inherits advantages such as ultra-high resolution and compact optical system, but also expands the field of view in quantitative imaging, thus PIE is widely used in short wavelength imaging such as X-ray and electron beam imaging, and then extended to visible light field. However, PIE requires coherent illumination for both phase and amplitude retrieval, while traditional X-ray or electron beam sources often cannot satisfy this strict coherent condition, which leads to poor-quality information retrieval with low signal-to-noise ratio. Though several proposed methods such as multiple wavelength and multi-mode algorithms can eliminate incoherency influence to some extent, various details such as quantitative spectrum of illuminating source should be obtained before information retrieval, which complicates computing procedures. In addition, it is hard to acquire the spectrum of the illuminating source in most cases. In order to acquire high-quality information based on PIE with partially coherent illumination, a newly designed enhanced phase retrieval method for weakly scattering samples in PIE with partially coherent illumination is presented in this paper, in which only the bright field of the diffraction patterns is used in the iterative procedures mimicking the coherent cases especially for weakly scattering samples without any prior illuminating details. The bright field area can be regarded as purely coherent diffraction patterns composed of a strengthened zeroth order beam and a weakened diffracted beam. While the dark-field area generated by interference of diffracted beams cannot satisfy the requirement for coherence, therefore, dark-field diffraction patterns should be excluded in sample information extraction and only the bright field is used for phase retrieval via iterative process. Compared with the proposed multiple wavelength and multi-mode algorithms, the proposed method can simplify sample reconstructing procedures due to needing no prior knowledge. Moreover, in order to enhance the information of weakly scattering samples in retrieval, high order iteration method is also introduced in the paper. Since the bright field can be regarded as purely coherent diffraction patterns composed of a strengthened zeroth order beam and a weakened diffracted beam. For weakly scattering sample, the weakened diffracted beam is much lower than zeroth order beam, thus it is difficult to acquire high-contrast information with classical PIE algorithms. Introducing high order iterative tactic, the contrast of weakly scattering sample is obviously improved and the details of weakly scattering sample can be retrieved clearly. Both theoretical analysis and numerical simulations are illustrated in detail, proving the robustness and availability of the designed method: high-contrast phase information can be obtained with the proposed method, while traditional phase retrieval algorithm almost loses all details of the sample. In order to mimic the real experimental situation, a 30 dB white noise is added into the simulation, the details of weakly scattering sample phase information can also be retrieved clearly by using the bright field of the diffraction patterns with high order iteration method. With the newly designed enhanced phase retrieval method for weakly scattering samples with partially coherent illumination, sample retrieval via PIE can not only use ordinary X-ray source or electron beam as illumination source, thereby avoiding the dependence on complete coherent source, but also obviously improve the retrieval quality of the sample characteristics, which widely expands the application fields of the PIE.
      通信作者: 刘诚, cheng.liu@hotmail.co.uk
    • 基金项目: 江苏省自然科学基金(批准号:BK2012548)资助的课题.
      Corresponding author: Liu Cheng, cheng.liu@hotmail.co.uk
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012548).
    [1]

    Raab E L, Tennant D M, Waskiewicz W K, MacDowell A A, Freeman R R 1991 J. Opt. Soc. Am. A 8 1614

    [2]

    Bergin R 1964 J. Sci. Instrum. 41 558

    [3]

    Montgomery W D 1978 Opt. Lett. 2 120

    [4]

    Fienup J R 1978 Opt. Lett. 31 27

    [5]

    Fienup J R 1982 Appl. Opt. 21 2578

    [6]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [7]

    Zuo J, Vartanyants I, Gao M, Zhang R, Nagahara L A 2003 Science 300 1419

    [8]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506

    [9]

    Elser V 2003 J. Opt. Soc. Am. A 20 40

    [10]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [11]

    Faulkner H M A, Rodenburg J M 2004 Phy. Rev. Lett. 93 023903

    [12]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [13]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [14]

    Rodenburg J M 2008 Adv. Imag. Elect. Phys. 150 87

    [15]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J M 2011 SPIE 8001 800109

    [16]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese) [刘诚, 潘兴臣, 朱健强 2013 物理学报 62 184204]

    [17]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A G, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809

    [18]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, Mcnulty I 2011 Nat. Photonics 5 420

    [19]

    Liu C, Zhu J Q, Rodenburg J M 2015 Chin. Phys. B 24 024201

  • [1]

    Raab E L, Tennant D M, Waskiewicz W K, MacDowell A A, Freeman R R 1991 J. Opt. Soc. Am. A 8 1614

    [2]

    Bergin R 1964 J. Sci. Instrum. 41 558

    [3]

    Montgomery W D 1978 Opt. Lett. 2 120

    [4]

    Fienup J R 1978 Opt. Lett. 31 27

    [5]

    Fienup J R 1982 Appl. Opt. 21 2578

    [6]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [7]

    Zuo J, Vartanyants I, Gao M, Zhang R, Nagahara L A 2003 Science 300 1419

    [8]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506

    [9]

    Elser V 2003 J. Opt. Soc. Am. A 20 40

    [10]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [11]

    Faulkner H M A, Rodenburg J M 2004 Phy. Rev. Lett. 93 023903

    [12]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [13]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [14]

    Rodenburg J M 2008 Adv. Imag. Elect. Phys. 150 87

    [15]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J M 2011 SPIE 8001 800109

    [16]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese) [刘诚, 潘兴臣, 朱健强 2013 物理学报 62 184204]

    [17]

    Chen B, Dilanian R A, Teichmann S, Abbey B, Peele A G, Williams G J, Hannaford P, Dao L V, Quiney H M, Nugent K A 2009 Phys. Rev. A 79 023809

    [18]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, Mcnulty I 2011 Nat. Photonics 5 420

    [19]

    Liu C, Zhu J Q, Rodenburg J M 2015 Chin. Phys. B 24 024201

  • [1] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [2] 陈顺意, 丁攀峰, 蒲继雄. 部分相干径向偏振光束传输中相干性研究. 物理学报, 2015, 64(13): 134201. doi: 10.7498/aps.64.134201
    [3] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [4] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究. 物理学报, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [5] 陈小凡. 相对论重离子碰撞中部分相干源的相干因子. 物理学报, 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [6] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [7] 程科, 张洪润, 吕百达. 部分相干涡旋光束形成的相干涡旋特性研究. 物理学报, 2010, 59(1): 246-255. doi: 10.7498/aps.59.246
    [8] 程科, 吕百达. 四个部分相干点源的完全相消干涉特性. 物理学报, 2009, 58(1): 250-257. doi: 10.7498/aps.58.250
    [9] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成. 物理学报, 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [10] 程 科, 闫红卫, 吕百达. 部分相干涡旋光束叠加场中的合成相干涡旋及其动态传输. 物理学报, 2008, 57(8): 4911-4920. doi: 10.7498/aps.57.4911
    [11] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [12] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [13] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [14] 刘普生, 吕百达. 拉盖尔-高斯模叠加而成的部分相干光的相干涡旋. 物理学报, 2007, 56(5): 2623-2628. doi: 10.7498/aps.56.2623
    [15] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [16] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [17] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性. 物理学报, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
    [18] 屠锦洪, 詹黎. 部分相干光照明下旋转双光栅衍射干涉效应. 物理学报, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
    [19] 庄松林, 郑权. 部分相干信息处理中的逆源问题. 物理学报, 1985, 34(4): 439-446. doi: 10.7498/aps.34.439
    [20] 庄松林, 陈祥祯. 部分相干情形下象差光学系统的直边衍射. 物理学报, 1979, 28(5): 59-71. doi: 10.7498/aps.28.59
计量
  • 文章访问数:  6085
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-09
  • 修回日期:  2016-06-28
  • 刊出日期:  2016-09-05

/

返回文章
返回