搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干径向偏振光束传输中相干性研究

陈顺意 丁攀峰 蒲继雄

引用本文:
Citation:

部分相干径向偏振光束传输中相干性研究

陈顺意, 丁攀峰, 蒲继雄

Research on the coherence of partially coherent radially polarized beam during propagation

Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong
PDF
导出引用
  • 根据广义惠更斯理论及相干偏振统一理论, 研究部分相干径向偏振光束在自由空间中传输时, 不同参考点处复相干度随传输距离的变化规律. 研究表明, 部分相干径向偏振光束在自由空间中传输, 不同参考点处, 复相干度模值随距离的变化规律有所差别. 当参考点位于原点时, 随着传输距离增大, μxx模值及μxy模值分布形式不变, 分布范围增大; 当参考点位于x轴上时, μxx模值由单峰值向三峰两谷对称形式演化, μxy模值由单侧两峰向四峰四谷对称形式演化, 完成演化所需传输距离与参考点距离x轴中心的远近有关, 参考点距离x轴中心越近, 完成演化所需的传输距离越短; 当参考点位于y轴时, 随着距离增大, μxx模值分布形式不变, 分布范围增大, μxy模值由上侧两峰向四峰四谷对称形式演化, 演化所需传输距离与参考点距y轴中心远近有关, 参考点距y轴中心越近, 完成演化所需的传输距离越短; 当参考点位于其他位置时(非特殊位置), μxx模值及μxy 模值分布规律, 遵从各自参考点在x轴, y轴上的分布规律的结合即参考点位于其他位置时, μxx模值及μxy模值分别随距离变化逐渐演化成三峰结构、四峰结构.
    Based on the generalized Huygens theory and the unified theory of coherence and polarization, study is made on the module value of complex degree of coherence of partially coherent radially polarized beam (PCRPB) which changes with transmission distance at different reference point. Results show that the module value distribution of the complex degree changing with the transmission distance is different for different reference point while PCRPB propagates in a free space. When the reference point is at the origin, with the increase of the transmission distance, μxx and μxy hold a symmetric distribution, and the distribution range increases. When the reference point is confined on the x-axis, μxx changes from single peak to three peaks, and the two valleys lie symmetrically; and μxy changes from two peaks to four peaks, and the four valleys lie symmetrically. The transmission distance of the evolution is related to the distance between the reference point and the origin: the closer the distance between the reference point and the origin, the shorter the transmission distance is needed to achieve the evolution process. When the reference point lies on the y-axis, μxx holds a symmetric distribution, its distribution range increases, and μxy changes from two peak values to four peaks and four valleys which are in symmetric form. The transmission distance is related to the spacing between the reference point and the origin, the closer the distance between the reference point and the origin: the shorter the transmission is needed to achieve the evolution process. In addition, when the reference point lies at other positions on the observation plane, the module value distribution of μxx and μxy is obtained by combining the distribution rules of reference point at x-axis and y-axis: i.e., when the reference point lies at other positions of the observation plane, the module values μxx and μxy can be composed of three peaks and four peaks with the increase of transmission distance, respectively.
    • 基金项目: 国家自然科学基金(批准号:61307001,61178015)和福建省自然科学基金(批准号:2013J05094,2014J05007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 61307001, 61178015), and by the Natural Science Foundation of Fujian Province, China (Grant Nos. 2013J05094, 2014J05007).
    [1]

    Mushiake Y, Matsumura K, Nakajima N 1972 Proc IEEE 60 1107

    [2]

    Quabis S, Dorn R, Leuchs G 2005 Appl. Phys. B 81 597

    [3]

    Diehl D W, Schoonover R W, Visser T D 2006 Opt. Express 14 3030

    [4]

    Salamin Y I 2006 Opt. Lett. 31 2619

    [5]

    Deng D M, Guo Q, Wu L, Yang X 2007 J. Opt. Soc. Am. B 24 636

    [6]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [7]

    Gao Y, Liu S G 2010 Laser & Optoelectronics Progress 47 101801 (in Chinese) [高宇, 刘书桂 2010 激光与光电子学进展 47 101801]

    [8]

    Yan J, Lu Y H, Wang P, Ming H 2010 Acta. Opt. Sin. 30 3597 (in Chinese) [闫杰, 鲁拥华, 王沛, 明海 2010 光学学报 30 3597]

    [9]

    Kimura W D, Kim G H, Romea R D, Steinhauer L C, Pogoreisky I V, Kusche K P, Fernow R C, Wang X, Liu Y 1995 Phys. Rev. Lett. 74 546

    [10]

    Novotny L, Beversluis M R, Youngworth K S, Brown T G 2001 Phys. Rev. Lett. 86 5251

    [11]

    Dorn R, Quabis S, Leuchs G 2003 Phys Rev. Lett. 91 233901

    [12]

    Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [13]

    Salem M, Shirai T, Sogariu A, Wolf E 2003 Opt. Commun. 216 261

    [14]

    Aristide D, Stefan A 2003 Opt. Lett. 28 10

    [15]

    Chen X W, Tang M Y, Ji X L 2008 Acta. Phys. Sin. 57 2607 (in Chinese) [陈晓文, 汤明玥, 季小玲 2008 物理学报 57 2607]

    [16]

    Ji X L 2010 Acta. Phys. Sin. 59 3953 (in Chinese) [季小玲 2010 物理学报 59 3953]

    [17]

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta. Phys. Sin. 62 094205 (in Chinese) [崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205]

    [18]

    Mandel L, Wolf E 1995 Optical coherence and quantum optics (Cambridge: U. Press) p340-372

    [19]

    E. Wolf. 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: U. Press) p25-28, 179-181, 191-197

  • [1]

    Mushiake Y, Matsumura K, Nakajima N 1972 Proc IEEE 60 1107

    [2]

    Quabis S, Dorn R, Leuchs G 2005 Appl. Phys. B 81 597

    [3]

    Diehl D W, Schoonover R W, Visser T D 2006 Opt. Express 14 3030

    [4]

    Salamin Y I 2006 Opt. Lett. 31 2619

    [5]

    Deng D M, Guo Q, Wu L, Yang X 2007 J. Opt. Soc. Am. B 24 636

    [6]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [7]

    Gao Y, Liu S G 2010 Laser & Optoelectronics Progress 47 101801 (in Chinese) [高宇, 刘书桂 2010 激光与光电子学进展 47 101801]

    [8]

    Yan J, Lu Y H, Wang P, Ming H 2010 Acta. Opt. Sin. 30 3597 (in Chinese) [闫杰, 鲁拥华, 王沛, 明海 2010 光学学报 30 3597]

    [9]

    Kimura W D, Kim G H, Romea R D, Steinhauer L C, Pogoreisky I V, Kusche K P, Fernow R C, Wang X, Liu Y 1995 Phys. Rev. Lett. 74 546

    [10]

    Novotny L, Beversluis M R, Youngworth K S, Brown T G 2001 Phys. Rev. Lett. 86 5251

    [11]

    Dorn R, Quabis S, Leuchs G 2003 Phys Rev. Lett. 91 233901

    [12]

    Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [13]

    Salem M, Shirai T, Sogariu A, Wolf E 2003 Opt. Commun. 216 261

    [14]

    Aristide D, Stefan A 2003 Opt. Lett. 28 10

    [15]

    Chen X W, Tang M Y, Ji X L 2008 Acta. Phys. Sin. 57 2607 (in Chinese) [陈晓文, 汤明玥, 季小玲 2008 物理学报 57 2607]

    [16]

    Ji X L 2010 Acta. Phys. Sin. 59 3953 (in Chinese) [季小玲 2010 物理学报 59 3953]

    [17]

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta. Phys. Sin. 62 094205 (in Chinese) [崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205]

    [18]

    Mandel L, Wolf E 1995 Optical coherence and quantum optics (Cambridge: U. Press) p340-372

    [19]

    E. Wolf. 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: U. Press) p25-28, 179-181, 191-197

  • [1] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [2] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真. 物理学报, 2022, 71(14): 140201. doi: 10.7498/aps.71.20212420
    [3] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄. 非均匀关联径向偏振部分相干光的产生. 物理学报, 2019, 68(7): 074201. doi: 10.7498/aps.68.20182289
    [4] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [5] 杨爱林, 林强. 部分相干Airy光束在湍流大气中传输时的偏振特性. 物理学报, 2014, 63(20): 204101. doi: 10.7498/aps.63.204101
    [6] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究. 物理学报, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [7] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [8] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [9] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [10] 李晓庆, 季小玲. 截断部分相干厄米-高斯光束的广义M2G因子. 物理学报, 2011, 60(9): 094206. doi: 10.7498/aps.60.094206
    [11] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [12] 程科, 张洪润, 吕百达. 部分相干涡旋光束形成的相干涡旋特性研究. 物理学报, 2010, 59(1): 246-255. doi: 10.7498/aps.59.246
    [13] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成. 物理学报, 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [14] 程 科, 闫红卫, 吕百达. 部分相干涡旋光束叠加场中的合成相干涡旋及其动态传输. 物理学报, 2008, 57(8): 4911-4920. doi: 10.7498/aps.57.4911
    [15] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [16] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [17] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [18] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [19] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [20] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性. 物理学报, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
计量
  • 文章访问数:  4913
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-01-16
  • 刊出日期:  2015-07-05

/

返回文章
返回