搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaO掺杂对单畴GdBCO超导块材性能的影响

王妙 杨万民 杨芃焘 王小梅 张明 胡成西

引用本文:
Citation:

BaO掺杂对单畴GdBCO超导块材性能的影响

王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西

Influences of BaO doping on the properties of singe domain GdBCO bulk superconductors

Wang Miao, Yang Wan-Min, Yang Peng-Tao, Wang Xiao-Mei, Zhang Ming, Hu Cheng-Xi
PDF
导出引用
  • 采用改进后的顶部籽晶熔渗生长(M-TSIG)工艺,通过在固相先驱粉体中掺杂不同含量的BaO来有效地抑制GdBCO样品生长过程中出现的Gd/Ba替换现象,从而成功地制备出了一系列单畴GdBCO超导块材,并且对样品的宏观形貌、磁悬浮力、捕获磁通密度及临界温度等超导性能进行了研究.结果表明,随着BaO掺杂量的增加,样品的熔化温度(Tm)及包晶反应温度(Tp)均出现逐渐降低的趋势;同时,当样品中BaO的添加量在2 wt%4 wt%时,可以在一定的程度上有效提高GdBCO样品的磁悬浮力、捕获磁通密度及临界温度等超导性能.
    In this work, a series of single domain GdBCO bulk superconductors with different ratios of BaO addition in the solid phase pellet, is successfully fabricated to inhibit the Gd/Ba substitution in the growth process by the modified top seeded infiltration growth (M-TSIG) technique. The reaction of the precursor powders, the growth morphology, the magnetic levitation force (F), the trapped magnetic flux (Btr) and critical temperature (Tc) of the single domain GdBCO bulk superconductors are investigated in detail. First, the differential thermal analysis is performed on the precursor powders of 10 mg solid phase pellet (containing various amounts of BaO) and 15 mg liquid phase pellet in order to investigate the melting temperature (Tm) and the peritectic temperature (Tp) of the GdBCO superconductor system. The results show that the melting point of the precursor powder decreases by nearly 8℃ as the BaO composition increases from 0 wt% to 4 wt%, which leads to Tp decreasing with BaO content increasing. Second, the top view morphologies of the GdBCO samples are also discussed. All of the samples exhibit clear, fourfold growth sector boundaries on their top surfaces, and spontaneous satellite grains are observed in none of these samples. It can be seen that the different ratio of BaO addition cannot affect the growth morphology of the single domain GdBCO bulk superconductor. And thirdly, the levitation force and trapped field of each of the samples are measured under a zero field cooling state at 77 K by the three-dimensional magnetic force and field device. The values of the levitation force for the samples are slightly different for different ratios of BaO additions. The largest levitation force is 35 N, which is obtained in the sample with 2.5 wt%, and the smallest one is 28 N in the sample with 1 wt% BaO addition. And also, the trapped field of the sample can be attributed simply to the variation in the pinning strength. It can be obviously seen that these values fluctuate between 0.28 T and 0.32 T for these samples. Finally, the critical temperatures of the samples are measured by the vibrating sample magnetometer with an external magnetic field of 0.01 T. The samples exhibit outstanding features of high Tc, which indicates that these samples are of good quality and the Gd/Ba substitution is inhibited by the BaO addition. The above results show that the values of melting temperature (Tm) and peritectic temperature (Tp) of the samples have the decrease tendencies, and the superconducting properties of the samples (such as F, Btr and Tc) can be improved to a certain extent when the amount of BaO added ranges from 2 wt% to 4 wt%, which are very helpful in inhibiting the Gd/Ba substitution and fabricating the high-quality single domain GdBCO bulk superconductors.
      通信作者: 王妙, cwnanmao@126.com
    • 基金项目: 国家自然科学基金(批准号:51572164)、教育部科学技术研究重大项目(编号:311033)和西安航空学院校级科研项目(编号:2016KY1213)资助的课题.
      Corresponding author: Wang Miao, cwnanmao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572164), the Keygrant Project of Chinese Ministry of Education (Grant No. 311033), and the Scientific Research Project of Xi'an Aeronautical University, China (Grant No. 2016KY1213).
    [1]

    Durrell J H, Dennis A R, Jaroszynski J, Ainslie M D, Palmer K G, Shi Y H, Campbell A M, Hull J, Strasik M, Hellstrom E E 2014Supercond. Sci. Technol. 27 082001

    [2]

    Muralidhar M, Tomita M, Suzuki K, Jirsa M, Fukumoto Y, Ishihara A 2010Supercond. Sci. Technol. 23 045033

    [3]

    Shi Y, Babu N H, Iida K, Yeoh W K, Dennis A R, Pathak S K, Cardwell D A 2010Physica C 470 685

    [4]

    Cheng L, Li T Y, Yan S B, Sun L J, Yao X, Puzmiak R 2011J. Am. Cer. Soc. 94 3139

    [5]

    Nariki S, Sakai N, Murakami M 2002Supercond. Sci. Technol. 15 648

    [6]

    Nitadori T, Ichiki T, Misono M 1988Bull. Chem. Soc. Jpn. 61 621

    [7]

    Nariki S, Sakai N, Murakami M 2005Supercond. Sci. Technol. 18 S126

    [8]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015Physica C 510 54

    [9]

    Miyachi K, Sudoh K, Ichino Y, Yoshida Y, Takai Y 2003Physica C 392 1261

    [10]

    Dai J, Zhao Z, Xiong J 2003Supercond. Sci. Technol. 16 815

    [11]

    Taskin A, Lavrov A, Ando Y 2006Phy. Rev. B 73 121101

    [12]

    Tsvetkov D, Sereda V, Zuev A Y 2010Solid State Ionics 180 1620

    [13]

    Wu H, Kramer M J, Dennis K W, Mccallum R W 1997IEEE Trans. Appl. Supercon. 7 1731

    [14]

    Li B, Zhou D, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014Physica C 496 28

    [15]

    Shi Y, Babu N, Iida K, Cardwell D A 2008Physica C 468 1408

    [16]

    Li B, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012Physica C 475 51

    [17]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 426 613

    [18]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Supercond. Sci. Technol. 18 229

    [19]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 417 77

    [20]

    Shi Y, Babu N H, Iida K, Cardwell D A 2007IEEE Trans. Appl. Supercon. 17 2984

    [21]

    Cheng X F 2010Ph. D. Dissertation (Xi'an:Shaanxi Normal University) (in Chinese)[程晓芳2010博士学位论文(西安:陕西师范大学)]

    [22]

    Cheng X F, Yang W M, Li G Z, Fan J, Guo X D, Zhu W J 2010Chin. J. L. Temp. Phys. 2 150(in Chinese)[程晓芳, 杨万民, 李国政, 樊静, 郭晓丹, 朱维君2010低温物理学报2 150]

    [23]

    Li G Z, Yang W M, Liang W, Li J W 2011Mater. Lett. 65 304

    [24]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013Physica C 492 129

    [25]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006Physica C 347 445

    [26]

    Shiohara Y, Endo A 1997A Mater. Sci. Eng. R:Reports 19 1

    [27]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015Acta Phys. Sin. 64 077401(in Chinese)[郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强2015物理学报64 077401]

    [28]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015Supercond. Sci. Technol. 28 035004

  • [1]

    Durrell J H, Dennis A R, Jaroszynski J, Ainslie M D, Palmer K G, Shi Y H, Campbell A M, Hull J, Strasik M, Hellstrom E E 2014Supercond. Sci. Technol. 27 082001

    [2]

    Muralidhar M, Tomita M, Suzuki K, Jirsa M, Fukumoto Y, Ishihara A 2010Supercond. Sci. Technol. 23 045033

    [3]

    Shi Y, Babu N H, Iida K, Yeoh W K, Dennis A R, Pathak S K, Cardwell D A 2010Physica C 470 685

    [4]

    Cheng L, Li T Y, Yan S B, Sun L J, Yao X, Puzmiak R 2011J. Am. Cer. Soc. 94 3139

    [5]

    Nariki S, Sakai N, Murakami M 2002Supercond. Sci. Technol. 15 648

    [6]

    Nitadori T, Ichiki T, Misono M 1988Bull. Chem. Soc. Jpn. 61 621

    [7]

    Nariki S, Sakai N, Murakami M 2005Supercond. Sci. Technol. 18 S126

    [8]

    Xu K, Zhou D F, Li B Z, Hara S, Deng Z G, Izumi M 2015Physica C 510 54

    [9]

    Miyachi K, Sudoh K, Ichino Y, Yoshida Y, Takai Y 2003Physica C 392 1261

    [10]

    Dai J, Zhao Z, Xiong J 2003Supercond. Sci. Technol. 16 815

    [11]

    Taskin A, Lavrov A, Ando Y 2006Phy. Rev. B 73 121101

    [12]

    Tsvetkov D, Sereda V, Zuev A Y 2010Solid State Ionics 180 1620

    [13]

    Wu H, Kramer M J, Dennis K W, Mccallum R W 1997IEEE Trans. Appl. Supercon. 7 1731

    [14]

    Li B, Zhou D, Xu K, Tsuzuki K, Zhang J C, Izumi M 2014Physica C 496 28

    [15]

    Shi Y, Babu N, Iida K, Cardwell D A 2008Physica C 468 1408

    [16]

    Li B, Xu K, Hara S, Zhou D F, Zhang Y F, Izumi M 2012Physica C 475 51

    [17]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 426 613

    [18]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Supercond. Sci. Technol. 18 229

    [19]

    Xu C, Hu A, Sakai N, Izumi M, Izumi H 2005Physica C 417 77

    [20]

    Shi Y, Babu N H, Iida K, Cardwell D A 2007IEEE Trans. Appl. Supercon. 17 2984

    [21]

    Cheng X F 2010Ph. D. Dissertation (Xi'an:Shaanxi Normal University) (in Chinese)[程晓芳2010博士学位论文(西安:陕西师范大学)]

    [22]

    Cheng X F, Yang W M, Li G Z, Fan J, Guo X D, Zhu W J 2010Chin. J. L. Temp. Phys. 2 150(in Chinese)[程晓芳, 杨万民, 李国政, 樊静, 郭晓丹, 朱维君2010低温物理学报2 150]

    [23]

    Li G Z, Yang W M, Liang W, Li J W 2011Mater. Lett. 65 304

    [24]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013Physica C 492 129

    [25]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006Physica C 347 445

    [26]

    Shiohara Y, Endo A 1997A Mater. Sci. Eng. R:Reports 19 1

    [27]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015Acta Phys. Sin. 64 077401(in Chinese)[郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强2015物理学报64 077401]

    [28]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015Supercond. Sci. Technol. 28 035004

  • [1] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [2] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [3] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [4] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响. 物理学报, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [5] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [6] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [7] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [8] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [9] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [10] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [11] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [12] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [13] 余学才, 莫 影. 势场中玻色-爱因斯坦凝聚的临界温度. 物理学报, 2004, 53(12): 4075-4079. doi: 10.7498/aps.53.4075
    [14] 李宏成. 超导临界温度级数公式系数的改进. 物理学报, 1982, 31(5): 693-698. doi: 10.7498/aps.31.693
    [15] 雷啸霖. 奇点zph与超导临界温度级数. 物理学报, 1981, 30(10): 1376-1382. doi: 10.7498/aps.30.1376
    [16] 吉光达, 蔡俊道. 超导临界温度级数公式的应用. 物理学报, 1979, 28(6): 853-864. doi: 10.7498/aps.28.853
    [17] 蔡俊道, 吉光达, 吴杭生, 蔡建华, 龚昌德. 超导临界温度理论(Ⅲ). 物理学报, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [18] 龚昌德, 吴杭生, 蔡建华, 蔡俊道, 吉光达. 超导临界温度理论(Ⅱ). 物理学报, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [19] 蔡建华, 吴杭生. 超导临界温度严格公式的探讨. 物理学报, 1977, 26(6): 550-552. doi: 10.7498/aps.26.550
    [20] 吴杭生, 蔡建华, 龚昌德, 吉光达, 蔡俊道. 超导临界温度理论(Ⅰ). 物理学报, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
计量
  • 文章访问数:  2930
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-02
  • 修回日期:  2016-08-19
  • 刊出日期:  2016-11-05

BaO掺杂对单畴GdBCO超导块材性能的影响

  • 1. 西安航空学院理学院, 西安 710077;
  • 2. 陕西师范大学物理学与信息技术学院, 西安 710062
  • 通信作者: 王妙, cwnanmao@126.com
    基金项目: 国家自然科学基金(批准号:51572164)、教育部科学技术研究重大项目(编号:311033)和西安航空学院校级科研项目(编号:2016KY1213)资助的课题.

摘要: 采用改进后的顶部籽晶熔渗生长(M-TSIG)工艺,通过在固相先驱粉体中掺杂不同含量的BaO来有效地抑制GdBCO样品生长过程中出现的Gd/Ba替换现象,从而成功地制备出了一系列单畴GdBCO超导块材,并且对样品的宏观形貌、磁悬浮力、捕获磁通密度及临界温度等超导性能进行了研究.结果表明,随着BaO掺杂量的增加,样品的熔化温度(Tm)及包晶反应温度(Tp)均出现逐渐降低的趋势;同时,当样品中BaO的添加量在2 wt%4 wt%时,可以在一定的程度上有效提高GdBCO样品的磁悬浮力、捕获磁通密度及临界温度等超导性能.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回