搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线脉冲星导航动态模拟实验系统研制与性能测试

徐能 盛立志 张大鹏 陈琛 赵宝升 郑伟 刘纯亮

引用本文:
Citation:

X射线脉冲星导航动态模拟实验系统研制与性能测试

徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮

Development and performance test of dynamic simulation system for X-ray pulsar navigation

Xu Neng, Sheng Li-Zhi, Zhang Da-Peng, Chen Chen, Zhao Bao-Sheng, Zheng Wei, Liu Chun-Liang
PDF
导出引用
  • 本文设计了一种半实物实验系统,能模拟出航天器在地球轨道及深空飞行时接收脉冲星周期X射线信号的情形.该系统主要由动态信号数据库、X射线模拟源、真空系统和探测系统组成.模拟源可以模拟出任意波形的脉冲轮廓,探测系统的时间分辨率优于2 s,通过分析时间转化模型给出了动态信号生成方法.实验模拟了航天器在近地轨道飞行一周接收Crab脉冲信号,将采集的光子到达时间转换到太阳系质心时后累积脉冲轮廓与标准轮廓相关度为0.9882.
    X-ray pulsar navigation is a complete autonomous navigation system, which has broad application prospects. Because of the huge cost of the navigation system, the implementation of ground simulation system is essential to the application of X-ray pulsar navigation. At present, most of researches on the semi physical experiment system are static. The aim of this article is to develop the dynamic simulation experiment system as well as its performance test. Specifically, this system consists of the dynamic signal database, X-ray simulation source, vacuum system and detection system designed for different science purposes. The core component of the X-ray source is the gate controlled X-ray tube, which can simulate the pulse profile of arbitrary waveform. The detecting system is based on the silicon drift detector with high time response capability. It uses trapezoidal shape for signal processing, and the timing resolution of the detection system is better than 2 s. In addition, the dynamic signal generation method is given by analyzing the time transformation model while the SINC interpolation method is provided to generate the dynamic pulse profile. Finally, the spacecraft revolving around the earth for a circle and receiving a pulse signal of Crab is simulated. In the simulation, the orbital radius of satellite is 6578 km and the orbital period is 5400 s. The Crab pulsar is selected, and the pulse period is 33.4 ms, the number of photons received by the detector is 200 per second. As a contrast, a set of static experiments is also performed. The correlation coefficient between the cumulative pulse profile and the standard pulse profile is 0.9953. However, the correlation coefficient decreases gradually, from 0.9094 at 300 s to 0.4080 at 5400 s, in the dynamic experiment. Then, the pulse period is searched from the arrival time of photons. The periodicity of the pulse signal is sinusoidal when the search period is 60 s. The change rate of photon flux is less than 2\%, and the influence on the period search is negligible. The variation of pulse period is consistent with the motion law of spacecraft, which indicates that spacecraft motion is the dominant factor in time conversion. Finally, the arrival time of photons is transformed into the time at the solar system barycenter, indicating that the correlation coefficient between cumulative pulse profile and standard pulse profile is 0.9882. The result shows that the simulation system can simulate the X-ray pulse signal received by the spacecraft in orbit, which can provide the experimental basis for verifying the navigation algorithm and calibrating the detector performance.
      通信作者: 赵宝升, open@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61471357)和中国科学院西部之光基金资助的课题.
      Corresponding author: Zhao Bao-Sheng, open@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471357) and the West Light Foundation of the Chinese Academy Sciences.
    [1]

    Sheikh S I 2005Ph.D.Dissertation(USA:Univesity of Maryland)

    [2]

    Sheikh S I, Pines D J, Ray P S, Wood K S, Lovellette M N, Wolff M T 2004Proceedings of 14th AAS/AIAA Space Flight Mechanics Conference Maui, HI, February 8-12, 2004 p105

    [3]

    Su Z, Xu L P, Wang T 2011Acta Phys.Sin. 60 119701(in Chinese)[苏哲, 许录平, 王婷2011物理学报60 119701]

    [4]

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011Acta Phys.Sin. 60 029701(in Chinese)[胡慧君, 赵宝升, 盛立志, 鄢秋荣2011物理学报60 029701]

    [5]

    Rinauro S, Colonnese S, Scarano G 2013Signal Process. 93 326

    [6]

    Wang Y D, Zheng W, Sun S M, Li L 2014Aerosp.Sci.Technol. 36 27

    [7]

    Sheng L Z, Zhao B S, Wu J J, Zhou F, Song J, Liu Y A, Shen J S, Yan Q R, Deng N Q, Hu H J 2013Acta Phys.Sin. 62 129702(in Chinese)[盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君2013物理学报62 129702]

    [8]

    Gatti E, Rehak P 1984Nucl.Instrm.Meth. 225 608

    [9]

    Wu G G, Huang Y, Jia B, Cao X L, Meng X C, Wang H Y, Li X Z, Liang K, Yang R, Han D J 2009Nuclear Electronics Detection Technology 29 436(in Chinese)[吴广国, 黄勇, 贾彬, 曹学蕾, 孟祥承, 王焕玉, 李秀芝, 梁琨, 杨茹, 韩德俊2009核电子学与探测技术29 436]

    [10]

    Fei B J, Sun W J, Pan G T, Ji C X 2010Chin.J.Space Sci. 30 85(in Chinese)[费保俊, 孙维瑾, 潘高田, 季诚响2010空间科学学报30 85]

    [11]

    Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A, Yan Q R, Deng N Q, Zhao J J 2013Acta Phys.Sin. 62 119701(in Chinese)[周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军2013物理学报62 119701]

    [12]

    Wang Y D, Zheng W, Sun S M, Li L 2013Adv.Space Res. 51 2394

    [13]

    Zhang D P, Zheng W, Wang Y D, Zhang L 2016Math.Probl.Eng. 1 2

    [14]

    Zhou Q Y, Ji J F, Ren H F 2013Acta Phys.Sin. 62 019701(in Chinese)[周庆勇, 姬剑锋, 任红飞2013物理学报62 019701]

  • [1]

    Sheikh S I 2005Ph.D.Dissertation(USA:Univesity of Maryland)

    [2]

    Sheikh S I, Pines D J, Ray P S, Wood K S, Lovellette M N, Wolff M T 2004Proceedings of 14th AAS/AIAA Space Flight Mechanics Conference Maui, HI, February 8-12, 2004 p105

    [3]

    Su Z, Xu L P, Wang T 2011Acta Phys.Sin. 60 119701(in Chinese)[苏哲, 许录平, 王婷2011物理学报60 119701]

    [4]

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011Acta Phys.Sin. 60 029701(in Chinese)[胡慧君, 赵宝升, 盛立志, 鄢秋荣2011物理学报60 029701]

    [5]

    Rinauro S, Colonnese S, Scarano G 2013Signal Process. 93 326

    [6]

    Wang Y D, Zheng W, Sun S M, Li L 2014Aerosp.Sci.Technol. 36 27

    [7]

    Sheng L Z, Zhao B S, Wu J J, Zhou F, Song J, Liu Y A, Shen J S, Yan Q R, Deng N Q, Hu H J 2013Acta Phys.Sin. 62 129702(in Chinese)[盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君2013物理学报62 129702]

    [8]

    Gatti E, Rehak P 1984Nucl.Instrm.Meth. 225 608

    [9]

    Wu G G, Huang Y, Jia B, Cao X L, Meng X C, Wang H Y, Li X Z, Liang K, Yang R, Han D J 2009Nuclear Electronics Detection Technology 29 436(in Chinese)[吴广国, 黄勇, 贾彬, 曹学蕾, 孟祥承, 王焕玉, 李秀芝, 梁琨, 杨茹, 韩德俊2009核电子学与探测技术29 436]

    [10]

    Fei B J, Sun W J, Pan G T, Ji C X 2010Chin.J.Space Sci. 30 85(in Chinese)[费保俊, 孙维瑾, 潘高田, 季诚响2010空间科学学报30 85]

    [11]

    Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A, Yan Q R, Deng N Q, Zhao J J 2013Acta Phys.Sin. 62 119701(in Chinese)[周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军2013物理学报62 119701]

    [12]

    Wang Y D, Zheng W, Sun S M, Li L 2013Adv.Space Res. 51 2394

    [13]

    Zhang D P, Zheng W, Wang Y D, Zhang L 2016Math.Probl.Eng. 1 2

    [14]

    Zhou Q Y, Ji J F, Ren H F 2013Acta Phys.Sin. 62 019701(in Chinese)[周庆勇, 姬剑锋, 任红飞2013物理学报62 019701]

  • [1] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [2] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术. 物理学报, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [3] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211062
    [4] 方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣. 具有多物理特性的X射线脉冲星导航地面验证系统. 物理学报, 2019, 68(8): 089701. doi: 10.7498/aps.68.20182232
    [5] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法. 物理学报, 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [6] 薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣. 一种新的X射线脉冲星信号模拟方法. 物理学报, 2015, 64(21): 219701. doi: 10.7498/aps.64.219701
    [7] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [8] 张治国. 垂直多结光伏型集成硅X射线探测器的实现和实验. 物理学报, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [9] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法. 物理学报, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [10] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟. 物理学报, 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [11] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [12] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [13] 周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军. 基于X射线脉冲星导航的模拟调制仿真源研究. 物理学报, 2013, 62(11): 119701. doi: 10.7498/aps.62.119701
    [14] 谢强, 许录平, 张华, 罗楠. X射线脉冲星累积轮廓建模及信号辨识. 物理学报, 2012, 61(11): 119701. doi: 10.7498/aps.61.119701
    [15] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [16] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [17] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测. 物理学报, 2011, 60(4): 049701. doi: 10.7498/aps.60.049701
    [18] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [19] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, 2011, 60(2): 029701. doi: 10.7498/aps.60.029701
    [20] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
计量
  • 文章访问数:  5390
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-09
  • 刊出日期:  2017-03-05

/

返回文章
返回