搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有多物理特性的X射线脉冲星导航地面验证系统

方海燕 丛少鹏 孙海峰 李小平 苏剑宇 张力 沈利荣

引用本文:
Citation:

具有多物理特性的X射线脉冲星导航地面验证系统

方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣

Ground verification system of X-ray pulsar navigation with multi-physical properties

Fang Hai-Yan, Cong Shao-Peng, Sun Hai-Feng, Li Xiao-Ping, Su Jian-Yu, Zhang Li, Shen Li-Rong
PDF
HTML
导出引用
  • 导航地面验证是X射线脉冲星导航研究必不可少的环节. 针对导航算法验证需要真实连续的脉冲星信号的需求, 同时避免X射线调制及探测难度大、成本高的问题, 提出了一种基于可见光源的X射线脉冲星导航地面验证系统. 该系统利用太阳系质心处脉冲星信号模型和航天器轨道信息, 建立航天器处实时光子到达速率函数, 再通过硬件系统转换成电压信号, 利用该电压控制线性光源输出, 最后经衰减、探测及甄别后获得航天器处的实时光子到达时间序列. 该时间序列不仅具有导航脉冲星的轮廓特性、自转特性, 还包括空间传播时间效应及宇宙X射线背景. 本系统利用半物理装置对可见光进行调制及衰减, 实时判断轨道各位置处导航脉冲星的可见性, 实现X射线脉冲星信号传播过程的模拟. 该系统提供四路可控输出信号, 支持多种导航模式的验证. 仿真系统的性能分析和功能验证结果表明, 该系统具有良好的性能, 可提供真实便捷的地面验证环境.
    Navigation ground verification is an essential part of X-ray pulsar navigation (XPNAV) research. Aiming at the need of real and continuous pulsar signals for navigation algorithm verification, and to avoid the difficulties and high costs of X-ray modulation and detection, we propose an XPNAV ground verification system based on visible light source. In this system, the pulsar signal model at the solar system barycenter and the orbit information are used to establish the real-time photon arrival rate function at a spacecraft, and then the rate function is digitized and converted into voltage signal by the designed hardware system to drive a linear light source. After the processes of light attenuation, signal detection and pulse discrimination are experienced, the real-time photon time of arrivals (TOAs) at a spacecraft can be achieved. These photon TOAs contain characteristics of the pulsar profiles and frequency, the time propagation effect in the solar system, and cosmic X-ray background. The system uses semi-physical devices to modulate and attenuate visible light, and judges whether the spacecraft can observe the navigation pulsar according to the real position, thereby realizing the simulation of X-ray propagation in space. At present, the detection method of pulsar observation with single detector include detection of single pulsar, time division detection of multiple pulsars, and simultaneous detection of multiple pulsars. The system has four channels, each of which has three output modes mentioned above, and can support the verification of multiple navigation modes. This system consists of signal simulator and controller, single photon generator and detector, single photon screening and time tagging, and navigation algorithm verification. This paper presents the testing results of the system characteristics, the authenticity of the simulated photon arrival time series and the navigation verification. Monte Carlo experiments show that the recording accuracy of photon arrival time is 10 ns and the delays of the four channels are (11 ± 2), (15 ± 4), (14 ± 3), and (16 ± 4) ${\text{μ}}{\rm{s}}$, respectively. The multi-physical properties of simulated photon arrival time series are introduced in detail, including photon flux, shape of observation profile, pulsar frequency characteristics and Doppler shift. The position and velocity errors of autonomous navigation algorithm test are 13.587 km and 14.277 m·s–1, respectively, with an orbital altitude 26610 km and within 10 h. The ground verification system adopts master-slave control mode, the master computer mainly implements parameter setting and navigation algorithm verification, and the slave computer mainly carry out pulsar signal simulation. The communication based on TCP/IP protocol is applied to realize parameter transmission and real-time control between the master and slave computers in navigation verification process. The results of performance and functional test show that the system is available to accomplish the simulation of photon TOAs of X-ray pulsars at a spacecraft in real time and implement the ground verification of XPNAV.
      通信作者: 孙海峰, hfsun@xidian.edu.cn
      Corresponding author: Sun Hai-Feng, hfsun@xidian.edu.cn
    [1]

    Sheikh S I 2005 Ph. D. Dissertation (USA: University of Maryland)

    [2]

    苏哲, 许录平, 王婷 2011 物理学报 60 119701Google Scholar

    Su Z, Xu L P, Wang T 2011 Acta Phys. Sin. 60 119701Google Scholar

    [3]

    贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩 2014 物理学报 63 219701Google Scholar

    Bei X M, Shuai P, Huang L W, Sun H F, Wu Y J, Zhang Q 2014 Acta Phys. Sin. 63 219701Google Scholar

    [4]

    薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣 2015 物理学报 64 219701Google Scholar

    Xue M F, Li X P, Sun H F, Liu B, Fang H Y, Shen L R 2015 Acta Phys. Sin. 64 219701Google Scholar

    [5]

    胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701Google Scholar

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701Google Scholar

    [6]

    刘利, 郑伟, 汤国建, 孙守明 2012 国防科技大学学报 34 10Google Scholar

    Liu L, Zheng W, Tang G J, Sun S M 2012 Journal of National University of Defense Technology 34 10Google Scholar

    [7]

    周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军 2013 物理学报 62 119701Google Scholar

    Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A, Yan Q R, Deng N Q, Zhao J J 2013 Acta Phys. Sin. 62 119701Google Scholar

    [8]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [9]

    张华, 许录平 2011 光电子·激光 22 905

    Zhang H, Xu L P 2011 Journal of Optoelectronics · Laser 22 905 (in Chinese)

    [10]

    孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701Google Scholar

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701Google Scholar

    [11]

    Li X P, Xue M F, Fang H Y, Liu B, Sun H F, Liu Y M 2017 IEEE Trans. Ind. Electron. 64 1486Google Scholar

    [12]

    Winternitz L M B, Mitchell J W, Hassouneh M A, Valdez J E, Price S R, Semper S R, Yu W H, Ray P S, Wood K S, Arzoumanian Z, Gendreau K C 2015 IEEE Aerospace Conference Big Sky, MT, USA, March 7−14, 2015 p1

    [13]

    孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701Google Scholar

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [14]

    郑世界, 葛明玉, 韩大炜, 王文彬, 陈勇, 卢方军, 鲍天威, 柴军营, 董永伟, 冯旻子, 贺健健, 黄跃, 孔敏南, 李汉成, 李陆, 李正恒, 刘江涛, 刘鑫, 师昊礼, 宋黎明, 孙建超, 王瑞杰, 王源浩, 文星, 吴伯冰, 肖华林, 熊少林, 许寒晖, 徐明, 张娟, 张来宇, 张力, 张晓峰, 张永杰, 赵一, 张双南 2017 中国科学: 物理学 力学 天文学 47 120

    Zheng S J, Ge M Y, Han D W, Wang W B, Chen Y, Lu F J, Bao T W, Chai J Y, Dong Y W, Feng M Z, He J J, Huang Y, Kong M N, Li H C, Li L, Li Z H, Liu J T, Liu X, Shi H L, Song L M, Sun J C, Wang R J, Wang Y H, Wen X, Wu B B, Xiao H L, Xiong S L, Xu H H, Xu M, Zhang J, Zhang L Y, Zhang L, Zhang X F, Zhang Y J, Zhao Y, Zhang S N 2017Scientia Sinica Physica, Mechanica & Astronomica 47 120 (in Chinese)

    [15]

    张大鹏, 王奕迪, 姜坤, 郑伟 2018 宇航学报 39 411

    Zhang D P, Wang Y D, Jiang K, Zheng W 2018 Journal of Astronautics 39 411 (in Chinese)

    [16]

    徐延庭, 宫超林, 胡慧君, 张玉兔, 邵思霈, 史钰峰, 宋娟, 宋晓林 2018 航天器工程 27 114Google Scholar

    Xu Y T, Gong C L, Hu H J, Zhang Y T, Shao S P, Shi Y F, Song J, Song X L 2018 Spacecraft Engineering 27 114Google Scholar

    [17]

    Mitchell J W, Winternitz L M, Hassouneh M A, Price S R, Semper S R, Yu W H, Ray P S, Wolff M T, Kerr M, Wood K S 2018 41st Annual American Astronautical Society (AAS) Guidance and Control Conference Breckenridge, CO, United States, February 1−7, 2018 p1

    [18]

    艾玛德扎赫, 斯派尔 著 (侯建文, 阳光, 贺亮, 吴蕊 译) 2013 X射线脉冲星导航 (北京: 国防工业出版社) 第15−19页

    Emadzadeh A A, Speyer J L (translated by Hou J W, Yang G, He L, Wu R) 2013 Navigation in space by X-ray Pulsars (Beijing: National Defend Industry Press) pp15−19 (in Chinese)

    [19]

    Chen P T, Speyer J L, Bayard D S, Majid W A 2017 J. Guid. Control Dyn. 40 2237Google Scholar

    [20]

    毛悦 2009 博士学位论文(郑州: 解放军信息工程大学)

    Mao Y 2009 Ph. D. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese)

    [21]

    Margaret A L, Victoria M K 2011 Astrophys. J. 742 31Google Scholar

    [22]

    方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 物理学报 65 119701Google Scholar

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701Google Scholar

    [23]

    de Jager O C, Swanepoel J W H, Raubenheimer B C 1989 Astron. Astrophys. 221 180

    [24]

    Sheikh S I, Pines D J, Ray P S, Wood K S, Lovellette M N, Wolff M T 2006 J. Guid. Control Dyn. 29 49

  • 图 1  系统组成 (a)结构图; (b)实物图

    Fig. 1.  Component of the system: (a) Structure diagram; (b) physical diagram.

    图 2  导航验证系统软件框架

    Fig. 2.  Framework of navigation verification platform.

    图 3  航天器处光子序列实时模拟原理图

    Fig. 3.  Principle flow diagram of real-time simulation of photon TOA at the spacecraft.

    图 4  航天器处光子序列实时模拟流程图

    Fig. 4.  Flow diagram of simulation of photon TOA at the spacecraft.

    图 5  电压合成电路组成

    Fig. 5.  Diagram of the voltage synthesis which consists of a FPGA and a DAC.

    图 6  DAC输出信号频谱

    Fig. 6.  Frequency spectrum analysis of the DAC output signal.

    图 7  系统时间延迟测量原理

    Fig. 7.  Principle of system time delay measurement.

    图 8  面积归一化的观测轮廓

    Fig. 8.  Observed profiles by area normalization.

    图 9  频率缓变特性模拟

    Fig. 9.  Simulation of slow changing frequency characteristics.

    图 10  光子序列的多普勒频移

    Fig. 10.  Doppler frequency of photon TOA at the spacecraft.

    图 11  导航算法验证流程图

    Fig. 11.  Flow diagram of navigation algorithm verification.

    图 12  导航算法结果 (a)评估界面截图; (b)算法精度

    Fig. 12.  Results of navigation algorithm: (a) Evaluation-interface screenshot; (b) algorithm precision.

    表 1  脉冲星流量

    Table 1.  Flux of pulsars.

    脉冲星实际流量/
    ph·m–2·s–1
    模拟流量/ph·m–2·s–1 ±
    标准差
    B0531+211540015410 ± 100
    B1821–2451.9353 ± 6
    B1937+2150.49951 ± 4
    B1509–58212214 ± 10
    B0833–4565.966 ± 5
    下载: 导出CSV

    表 2  航天器初始参数

    Table 2.  Initial parameters of spacecraft.

    参数航天器初始状态状态初始估计值
    X/m–13305111.403–13305111.403 + 10000
    Y/m13305111.40313305111.403 + 10000
    Z/m18816268.99518816268.995 + 10000
    Vx/m·s–1–2736.715–5473.431 + 10
    Vy/m·s–1–2736.715–5473.431 + 10
    Vz/m·s–100 + 10
    R/m26610222.80626610222.806 + 17320.508
    V/m·s–13870.2993870.299 + 17.321
    下载: 导出CSV

    表 3  脉冲星参数

    Table 3.  Pulsars parameters.

    PulsarB1509–58B0531+21B0833–45
    RAJ15 13 55.5985 34 31.9728 35 20.591
    DECJ–59 8 9.5622 0 52.07–45 10 35.35
    MJD49180.00000050549368.00000023949353.000000103
    f (0)/s–16.632749386087429.916764174257311.1975539227276
    f (1)/s–2–6.75556 × 10–11–3.76613 × 10–10–1.55984 × 10–11
    f (2)/s–31.96 × 10–214.28 × 10–211.72 × 10–22
    Area/m2111
    下载: 导出CSV
  • [1]

    Sheikh S I 2005 Ph. D. Dissertation (USA: University of Maryland)

    [2]

    苏哲, 许录平, 王婷 2011 物理学报 60 119701Google Scholar

    Su Z, Xu L P, Wang T 2011 Acta Phys. Sin. 60 119701Google Scholar

    [3]

    贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩 2014 物理学报 63 219701Google Scholar

    Bei X M, Shuai P, Huang L W, Sun H F, Wu Y J, Zhang Q 2014 Acta Phys. Sin. 63 219701Google Scholar

    [4]

    薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣 2015 物理学报 64 219701Google Scholar

    Xue M F, Li X P, Sun H F, Liu B, Fang H Y, Shen L R 2015 Acta Phys. Sin. 64 219701Google Scholar

    [5]

    胡慧君, 赵宝升, 盛立志, 鄢秋荣 2011 物理学报 60 029701Google Scholar

    Hu H J, Zhao B S, Sheng L Z, Yan Q R 2011 Acta Phys. Sin. 60 029701Google Scholar

    [6]

    刘利, 郑伟, 汤国建, 孙守明 2012 国防科技大学学报 34 10Google Scholar

    Liu L, Zheng W, Tang G J, Sun S M 2012 Journal of National University of Defense Technology 34 10Google Scholar

    [7]

    周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军 2013 物理学报 62 119701Google Scholar

    Zhou F, Wu G M, Zhao B S, Sheng L Z, Song J, Liu Y A, Yan Q R, Deng N Q, Zhao J J 2013 Acta Phys. Sin. 62 119701Google Scholar

    [8]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [9]

    张华, 许录平 2011 光电子·激光 22 905

    Zhang H, Xu L P 2011 Journal of Optoelectronics · Laser 22 905 (in Chinese)

    [10]

    孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701Google Scholar

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701Google Scholar

    [11]

    Li X P, Xue M F, Fang H Y, Liu B, Sun H F, Liu Y M 2017 IEEE Trans. Ind. Electron. 64 1486Google Scholar

    [12]

    Winternitz L M B, Mitchell J W, Hassouneh M A, Valdez J E, Price S R, Semper S R, Yu W H, Ray P S, Wood K S, Arzoumanian Z, Gendreau K C 2015 IEEE Aerospace Conference Big Sky, MT, USA, March 7−14, 2015 p1

    [13]

    孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701Google Scholar

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701Google Scholar

    [14]

    郑世界, 葛明玉, 韩大炜, 王文彬, 陈勇, 卢方军, 鲍天威, 柴军营, 董永伟, 冯旻子, 贺健健, 黄跃, 孔敏南, 李汉成, 李陆, 李正恒, 刘江涛, 刘鑫, 师昊礼, 宋黎明, 孙建超, 王瑞杰, 王源浩, 文星, 吴伯冰, 肖华林, 熊少林, 许寒晖, 徐明, 张娟, 张来宇, 张力, 张晓峰, 张永杰, 赵一, 张双南 2017 中国科学: 物理学 力学 天文学 47 120

    Zheng S J, Ge M Y, Han D W, Wang W B, Chen Y, Lu F J, Bao T W, Chai J Y, Dong Y W, Feng M Z, He J J, Huang Y, Kong M N, Li H C, Li L, Li Z H, Liu J T, Liu X, Shi H L, Song L M, Sun J C, Wang R J, Wang Y H, Wen X, Wu B B, Xiao H L, Xiong S L, Xu H H, Xu M, Zhang J, Zhang L Y, Zhang L, Zhang X F, Zhang Y J, Zhao Y, Zhang S N 2017Scientia Sinica Physica, Mechanica & Astronomica 47 120 (in Chinese)

    [15]

    张大鹏, 王奕迪, 姜坤, 郑伟 2018 宇航学报 39 411

    Zhang D P, Wang Y D, Jiang K, Zheng W 2018 Journal of Astronautics 39 411 (in Chinese)

    [16]

    徐延庭, 宫超林, 胡慧君, 张玉兔, 邵思霈, 史钰峰, 宋娟, 宋晓林 2018 航天器工程 27 114Google Scholar

    Xu Y T, Gong C L, Hu H J, Zhang Y T, Shao S P, Shi Y F, Song J, Song X L 2018 Spacecraft Engineering 27 114Google Scholar

    [17]

    Mitchell J W, Winternitz L M, Hassouneh M A, Price S R, Semper S R, Yu W H, Ray P S, Wolff M T, Kerr M, Wood K S 2018 41st Annual American Astronautical Society (AAS) Guidance and Control Conference Breckenridge, CO, United States, February 1−7, 2018 p1

    [18]

    艾玛德扎赫, 斯派尔 著 (侯建文, 阳光, 贺亮, 吴蕊 译) 2013 X射线脉冲星导航 (北京: 国防工业出版社) 第15−19页

    Emadzadeh A A, Speyer J L (translated by Hou J W, Yang G, He L, Wu R) 2013 Navigation in space by X-ray Pulsars (Beijing: National Defend Industry Press) pp15−19 (in Chinese)

    [19]

    Chen P T, Speyer J L, Bayard D S, Majid W A 2017 J. Guid. Control Dyn. 40 2237Google Scholar

    [20]

    毛悦 2009 博士学位论文(郑州: 解放军信息工程大学)

    Mao Y 2009 Ph. D. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese)

    [21]

    Margaret A L, Victoria M K 2011 Astrophys. J. 742 31Google Scholar

    [22]

    方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 物理学报 65 119701Google Scholar

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701Google Scholar

    [23]

    de Jager O C, Swanepoel J W H, Raubenheimer B C 1989 Astron. Astrophys. 221 180

    [24]

    Sheikh S I, Pines D J, Ray P S, Wood K S, Lovellette M N, Wolff M T 2006 J. Guid. Control Dyn. 29 49

  • [1] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [2] 周庆勇, 魏子卿, 闫林丽, 孙鹏飞, 刘思伟, 冯来平, 姜坤, 王奕迪, 朱永兴, 刘晓刚, 明锋, 张奋, 贺珍妮. 面向综合定位导航授时系统的天地基脉冲星时间研究. 物理学报, 2021, 70(13): 139701. doi: 10.7498/aps.70.20210288
    [3] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮. X射线脉冲星导航动态模拟实验系统研制与性能测试. 物理学报, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [4] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法. 物理学报, 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [5] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [6] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法. 物理学报, 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [7] 薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣. 一种新的X射线脉冲星信号模拟方法. 物理学报, 2015, 64(21): 219701. doi: 10.7498/aps.64.219701
    [8] 贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩. 一种脉冲星信号模拟新方法. 物理学报, 2014, 63(21): 219701. doi: 10.7498/aps.63.219701
    [9] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测. 物理学报, 2013, 62(13): 139702. doi: 10.7498/aps.62.139702
    [10] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [11] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟. 物理学报, 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [12] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [13] 王自强, 钟敏成, 周金华, 李银妹. 基于自回归模型的光阱中粒子运动模拟. 物理学报, 2013, 62(18): 188701. doi: 10.7498/aps.62.188701
    [14] 周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军. 基于X射线脉冲星导航的模拟调制仿真源研究. 物理学报, 2013, 62(11): 119701. doi: 10.7498/aps.62.119701
    [15] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [16] 谢强, 许录平, 张华, 罗楠. X射线脉冲星累积轮廓建模及信号辨识. 物理学报, 2012, 61(11): 119701. doi: 10.7498/aps.61.119701
    [17] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [18] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测. 物理学报, 2011, 60(4): 049701. doi: 10.7498/aps.60.049701
    [19] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [20] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, 2011, 60(2): 029701. doi: 10.7498/aps.60.029701
计量
  • 文章访问数:  6233
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 修回日期:  2019-02-16
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回