-
采用密度泛函理论的平面波超软赝势方法,对过渡金属Fe,Ni,Pd,Pt,Cu,Ag和Au的中性原子在锐钛矿TiO2(101)面上的掺杂改性开展了系统深入的理论研究.通过比较分析锐钛矿TiO2(101)面掺杂前后的几何结构、电子结构和光学性质等,揭示了宏观催化活性与电子结构、光电子特性之间的关联.结果表明:过渡金属掺杂能减小禁带宽度或引入杂质能级,从而提高TiO2(101)面的可见光响应;杂质能级通常位于禁带内,这主要是由过渡金属原子的d电子态贡献形成的;不同过渡金属掺杂的TiO2(101)面具有不同的光催化性能,这与掺杂后的禁带宽度、费米能级位置、杂质能级的形成位置以及过渡金属原子的最外层电子排布等有关.本研究为TiO2光催化剂结构设计与改性提供了指导性参考,并有利于加深人们对其他材料的过渡金属掺杂的理解.
-
关键词:
- 锐钛矿TiO2(101)面 /
- 过渡金属掺杂 /
- 电子结构 /
- 光学性质
Exploring new types of photocatalysts and modifying the photocatalytic activity have attracted more and more extensive attention in many research fields. Anatase TiO2, a promising photocatalyst widely studied, can only absorb the ultraviolet light and thus only make little use of the power in visible light. Therefore, it is an urgent task to make theoretical and experimental investigations on the photocatalytic mechanism in anatase TiO2 and then improve its visible light response so as to utilize more visible light. Now, in the present paper, we carry out a systematic theoretical investigation on modifying the photocatalytic properties of the anatase TiO2 (101) surface via doping transition metal neutral atoms such as Fe, Ni, Pd, Pt, Cu, Ag, and Au by using the plane wave ultrasoft pseudopotential method of the density functional theory. The dependence of the macroscopic catalytic activity on electronic structure and optoelectronic property is uncovered by making a comparative analysis of the geometric structures, the electronic structures, and the optical properties of the undoped and doped anatase TiO2 (101) surfaces. Our numerical results show that doping certain transition metals can suppress the band gap or induce extra impurity energy levels, which is beneficial to improving the visible light response of the TiO2 (101) surface in different ways. In most cases, the new impurity energy levels will appear in the original band gap, which comes from the contribution of the d electronic states in the transition metal atoms. Moreover, the photocatalytic activity of the TiO2 (101) surface can be changed differently by doping different transition metal atoms, which is closely dependent on the bandgap width, Fermi energy, the impurity energy level, and the electron configuration of the outermost shell of the dopants. This research should be an instructive reference for designing TiO2 (101) photocatalyst and improving its capability, and also helpful for understanding doping transition metal atoms in other materials.-
Keywords:
- anatase TiO2 (101) surface /
- transition metal doping /
- electronic structure /
- optical properties
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
[3] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431
[4] Huang X H, Tang Y C 2013 TiO2 Photocatalysis Technology and its Applications in the Field of Environment (Hefei: Hefei University of Technology Press) pp242-252 (in Chinese) [黄显怀, 唐玉朝 2013 TiO2光催化技术及其在环境领域的应用 (合肥: 合肥工业大学出版社) 第242252页]
[5] Palmisano G, Augugliaro V, Pagliaro M, Palmisano L 2007 Chem. Commun. 33 3425
[6] Ma H F, Wang X R, Ma F, Ding Y G, Wang Z 2013 Electr. Comp. Mater. 32 1 (in Chinese) [马洪芳, 王小蕊, 马芳, 丁严广, 王振 2013 电子元件与材料 32 1]
[7] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1998 Adv. Mater. 10 135
[8] Li X Z, Li F B, Yang C L, Ge W K 2001 J. Photochem. Photobiol. A 141 209
[9] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[10] Yu X B, Wang G H, Luo Y Q, Chen X H, Zhu J 2000 J. Shanghai Norm. Univ. Nat. Sci. 29 75 (in Chinese) [余锡宾, 王桂华, 罗衍庆, 陈秀红, 朱建 2000 上海师范大学学报 29 75]
[11] Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys.-Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]
[12] Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S 1999 J. Mater. Sci. Mater. Electron. 34 2773
[13] Huang P, Shang B, Li L, Lei J 2015 Chin. J. Chem. Phys. 28 681
[14] Samat M H, Hussin N H, Taib M F M, Yaakob M K, Samsi N S, Aziz S S S A, Yahya M Z A, Ali A M M 2016 Mater. Sci. Forum. 846 726
[15] Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102 (in Chinese) [李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102]
[16] Diebold U 2003 Surf. Sci. Rep. 48 53
[17] Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409
[18] Lazzeri M, Vittadini A, Selloni A 2002 Phys. Rev. B 65 119901
[19] Chen Z H, Fang X M, Zhang Z G 2013 Chem. Ind. Eng. Prog. 32 1320 (in Chinese) [陈志鸿, 方晓明, 张正国 2013 化工进展 32 1320]
[20] Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250
[21] Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46
[22] Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639
[23] John P P, Mel L 1983 Phys. Rev. Lett. 51 1884
[24] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[25] Li Z B, Wang X, Fan S W 2014 Acta Sci. Nat. Univ. Sunyatseni 53 114 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 中山大学学报: 自然科学版 53 114]
[26] Boschloo G K, Goossens A, Schoonman J 1997 J. Electrochem. Soc. 144 1311
[27] Ying Y, Feng Q, Wang W, Wang Y 2013 J. Semicond. 34 073004
[28] Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459
[29] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[30] Zhao Z, Liu Q 2008 J. Phys. D: Appl. Phys. 41 085417
[31] He C, Hu Y, Hu X, Larbot A 2002 Appl. Surf. Sci. 200 239
[32] Yuan Y, Ding J, Xu J, Deng J, Guo J 2010 J. Nanosci. Nanotechnol. 10 4868
[33] Sharma S D, Singh D, Saini K K, Kant C, Sharma V, Jain S C, Sharma C P 2006 Appl. Catal. A 314 40
[34] Zhou M, Yu J, Cheng B 2006 J. Hazard. Mater. 137 1838
[35] Li Z, Shen W, He W, Zu X 2008 J. Hazard. Mater. 155 590
[36] Lin H J, Yang T S, Hsi C S, Wang M C, Lee K C 2014 Ceram. Int. 40 10633
-
[1] Fujishima A, Honda K 1972 Nature 238 37
[2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
[3] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431
[4] Huang X H, Tang Y C 2013 TiO2 Photocatalysis Technology and its Applications in the Field of Environment (Hefei: Hefei University of Technology Press) pp242-252 (in Chinese) [黄显怀, 唐玉朝 2013 TiO2光催化技术及其在环境领域的应用 (合肥: 合肥工业大学出版社) 第242252页]
[5] Palmisano G, Augugliaro V, Pagliaro M, Palmisano L 2007 Chem. Commun. 33 3425
[6] Ma H F, Wang X R, Ma F, Ding Y G, Wang Z 2013 Electr. Comp. Mater. 32 1 (in Chinese) [马洪芳, 王小蕊, 马芳, 丁严广, 王振 2013 电子元件与材料 32 1]
[7] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1998 Adv. Mater. 10 135
[8] Li X Z, Li F B, Yang C L, Ge W K 2001 J. Photochem. Photobiol. A 141 209
[9] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[10] Yu X B, Wang G H, Luo Y Q, Chen X H, Zhu J 2000 J. Shanghai Norm. Univ. Nat. Sci. 29 75 (in Chinese) [余锡宾, 王桂华, 罗衍庆, 陈秀红, 朱建 2000 上海师范大学学报 29 75]
[11] Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys.-Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]
[12] Wang Y, Hao Y, Cheng H, Ma J, Xu B, Li W, Cai S 1999 J. Mater. Sci. Mater. Electron. 34 2773
[13] Huang P, Shang B, Li L, Lei J 2015 Chin. J. Chem. Phys. 28 681
[14] Samat M H, Hussin N H, Taib M F M, Yaakob M K, Samsi N S, Aziz S S S A, Yahya M Z A, Ali A M M 2016 Mater. Sci. Forum. 846 726
[15] Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102 (in Chinese) [李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102]
[16] Diebold U 2003 Surf. Sci. Rep. 48 53
[17] Lazzeri M, Vittadini A, Selloni A 2001 Phys. Rev. B 63 155409
[18] Lazzeri M, Vittadini A, Selloni A 2002 Phys. Rev. B 65 119901
[19] Chen Z H, Fang X M, Zhang Z G 2013 Chem. Ind. Eng. Prog. 32 1320 (in Chinese) [陈志鸿, 方晓明, 张正国 2013 化工进展 32 1320]
[20] Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal Chem. 473 250
[21] Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46
[22] Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639
[23] John P P, Mel L 1983 Phys. Rev. Lett. 51 1884
[24] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[25] Li Z B, Wang X, Fan S W 2014 Acta Sci. Nat. Univ. Sunyatseni 53 114 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 中山大学学报: 自然科学版 53 114]
[26] Boschloo G K, Goossens A, Schoonman J 1997 J. Electrochem. Soc. 144 1311
[27] Ying Y, Feng Q, Wang W, Wang Y 2013 J. Semicond. 34 073004
[28] Asahi R, Taga Y, Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459
[29] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[30] Zhao Z, Liu Q 2008 J. Phys. D: Appl. Phys. 41 085417
[31] He C, Hu Y, Hu X, Larbot A 2002 Appl. Surf. Sci. 200 239
[32] Yuan Y, Ding J, Xu J, Deng J, Guo J 2010 J. Nanosci. Nanotechnol. 10 4868
[33] Sharma S D, Singh D, Saini K K, Kant C, Sharma V, Jain S C, Sharma C P 2006 Appl. Catal. A 314 40
[34] Zhou M, Yu J, Cheng B 2006 J. Hazard. Mater. 137 1838
[35] Li Z, Shen W, He W, Zu X 2008 J. Hazard. Mater. 155 590
[36] Lin H J, Yang T S, Hsi C S, Wang M C, Lee K C 2014 Ceram. Int. 40 10633
计量
- 文章访问数: 7031
- PDF下载量: 320
- 被引次数: 0