搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究

霍大云 石震武 张伟 唐沈立 彭长四

引用本文:
Citation:

InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究

霍大云, 石震武, 张伟, 唐沈立, 彭长四

Barrier growth temperature of InGaAs/AlGaAs-quantum well infrared photodetector

Huo Da-Yun, Shi Zhen-Wu, Zhang Wei, Tang Shen-Li, Peng Chang-Si
PDF
导出引用
  • InGaAs/AlGaAs量子阱是中波量子阱红外探测器件最常用的材料体系,本文以结构为2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As的多量子阱材料为研究对象,利用分子束外延生长,固定InGaAs势阱的生长温度(465℃),然后依次升高分别选取465,500,545,580℃生长AlGaAs势垒层,从而获得四个不同的多量子阱样品.通过荧光光谱以及X射线衍射测试系统分析了势垒层生长温度对InGaAs量子阱发光和质量的影响,并较准确地给出了量子阱大致的温致弛豫轨迹:465500℃,开始出现相分离,但缺陷水平较低,属弹性弛豫阶段;500545℃,相分离加剧并伴随缺陷水平的上升,属弹性弛豫向塑性弛豫过渡阶段;545580℃,相分离以及缺陷水平急剧上升,迅速进入塑性弛豫阶段,尤其是580℃时,量子阱的材料质量被严重破坏.
    The InGaAs/AlGaAs quantum wells have been extensively applied to quantum well infrared photodetector of mid-wavelength. In this letter, four samples of 2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As multi-quantum wells are grown by molecular beam epitaxy with the InGaAs wells growing all at a temperature of 465℃ but the AlGaAs wells growing at temperatures of 465℃, 500℃, 545℃, and 580℃ respectively. The dependence of InGaAs quantum well strain relaxation on the AlGaAs growth temperature is systematically studied by photoluminescence spectroscopy and X-ray diffraction and then the thermal-induced relaxations of three key-stages are clearly observed in the following temperature ranges. 1) 465-500℃ for the stage of elastic relaxation: the phase separation begins to take place with a low defect density; 2) 500-545℃ for the transition stage from elastic relaxation to plastic relaxation: the phase separation will be further intensified with defect density increasing; 3) 545-580℃ for the fast stage dominated by elastic relaxation and the defect density will sharply increase. Especially when AlGaAs temperature increases to 580℃, a very serious plastic relaxation will take place and the InGaAs quantum well will be dramatically destroyed.
      通信作者: 石震武, zwshi@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504251)、江苏高校优势学科建设工程、科技部国际合作项目(批准号:2013DFG12210)、江苏省高校自然科学研究重大项目(批准号:12 KJA140001)和江苏省普通高校研究生科研创新计划(批准号:KYLX15_1252)资助的课题.
      Corresponding author: Shi Zhen-Wu, zwshi@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504251), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, the International Cooperation Project by MOST, China (Grant No. 2013DFG12210), the Natural Science Research Project of Jiangsu Higher Education, China (Grant No. 12KJA140001), and the Post-graduate Innovation Project of Jiangsu Higher Education, China (Grant No. KYLX15_1252).
    [1]

    Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092

    [2]

    Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 物理学报 52 503]

    [3]

    Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851

    [4]

    Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160

    [5]

    Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304

    [6]

    Levine B F 1993 J. Appl. Phys. 74 R1

    [7]

    Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227

    [8]

    Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 物理学报 49 797]

    [9]

    Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437

    [10]

    Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113

    [11]

    Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089

    [12]

    Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]

    [13]

    Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507

    [14]

    Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144

    [15]

    Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13

    [16]

    Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094

    [17]

    Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109

    [18]

    Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107

    [19]

    Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209

    [20]

    Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370

    [21]

    Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310

  • [1]

    Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092

    [2]

    Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 物理学报 52 503]

    [3]

    Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851

    [4]

    Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160

    [5]

    Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304

    [6]

    Levine B F 1993 J. Appl. Phys. 74 R1

    [7]

    Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227

    [8]

    Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 物理学报 49 797]

    [9]

    Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437

    [10]

    Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113

    [11]

    Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089

    [12]

    Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]

    [13]

    Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507

    [14]

    Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144

    [15]

    Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13

    [16]

    Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094

    [17]

    Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109

    [18]

    Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107

    [19]

    Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209

    [20]

    Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370

    [21]

    Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310

  • [1] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘. 基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 物理学报, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [2] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [3] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [4] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [5] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [6] 霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠. 两端叠层结构的中长波量子阱红外探测器. 物理学报, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [7] 刘小宇, 马文全, 张艳华, 霍永恒, 种明, 陈良惠. 10—14 μm同时响应的双色量子阱红外探测器. 物理学报, 2010, 59(8): 5720-5723. doi: 10.7498/aps.59.5720
    [8] 蔡春锋, 吴惠桢, 斯剑霄, 孙艳, 戴宁. MBE生长PbSe/PbSrSe量子阱结构的光致中红外发光的研究. 物理学报, 2009, 58(5): 3560-3564. doi: 10.7498/aps.58.3560
    [9] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [10] 徐向晏, 叶振华, 李志锋, 陆 卫. 中波HgCdTe双色红外探测器优化模拟计算. 物理学报, 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [11] 熊大元, 李 宁, 徐文兰, 甄红楼, 李志锋, 陆 卫. 甚长波量子阱红外探测器的暗电流特性研究. 物理学报, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [12] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [13] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [14] 熊大元, 曾 勇, 李 宁, 陆 卫. 甚长波量子阱红外探测器光栅耦合的研究. 物理学报, 2006, 55(7): 3642-3648. doi: 10.7498/aps.55.3642
    [15] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [16] 俞敏峰, 杨宇, 沈文忠, 朱海军, 龚大卫, 盛篪, 王迅. p型GexSi1-x/Si多量子阱的红外吸收及其分析. 物理学报, 1997, 46(4): 740-746. doi: 10.7498/aps.46.740
    [17] 俞谦, 王健华, 李德杰, 王玉田, 庄岩, 姜炜, 黄绮, 周钧铭. InGaAs/InAlAs多量子阱结构的量子限制Stark效应研究. 物理学报, 1996, 45(2): 274-282. doi: 10.7498/aps.45.274
    [18] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究. 物理学报, 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [19] 贾惟义, 鲁志东, 黄绮, 周均铭, 李永康, 王彦云. GaAs/GaAlAs多量子阱的光致荧光诊断. 物理学报, 1988, 37(6): 906-915. doi: 10.7498/aps.37.906
    [20] 徐仲英, 李玉璋, 徐俊英, 许继宗, 郑宝真, 庄蔚华, 葛惟锟. GaAs-GaAlAs多量子阱结构中热载流子弛豫过程. 物理学报, 1987, 36(10): 1336-1343. doi: 10.7498/aps.36.1336
计量
  • 文章访问数:  6547
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-12-22
  • 刊出日期:  2017-03-05

/

返回文章
返回