搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Ag薄膜在修饰的石墨烯表面的形态演变及其界面性质

赵珍阳 李涛 李肖音 李雄鹰 李辉

引用本文:
Citation:

液态Ag薄膜在修饰的石墨烯表面的形态演变及其界面性质

赵珍阳, 李涛, 李肖音, 李雄鹰, 李辉

Interfacial properties and morphological evolution of liquid Ag film on the modified graphene

Zhao Zhen-Yang, Li Tao, Li Xiao-Yin, Li Xiong-Ying, Li Hui
PDF
导出引用
  • 利用分子动力学方法模拟了纳米尺度下液态Ag在表面修饰的石墨烯表面的界面现象.研究表明:Ag液滴在石墨烯表面发生反润湿现象,势函数参数、基体表面结构、Ag液膜厚度以及液膜形状对液膜的润湿性及形态变化均有显著影响,这些条件的改变都将会影响液滴的反润湿性,使液滴的脱离时间和脱离速度发生改变.此外,通过设置双液膜体系,研究了两液膜的桥接、断裂或融合、脱离过程.该研究对深入认识超疏水表面以及如何控制液滴的收缩和融合具有重要意义.
    The interfacial wettability and morphological evolution of liquid on a solid substrate, as natural phenomena, have received great attention in recent years. Although much work has been done to study this process, existing studies mainly focus on the wetting properties of water. Therefore, in this paper, we use molecular dynamics simulation method to study the interfacial phenomena of the nanoscale liquid silver on graphene, whose surface has been modified. By making different comparisons, such as Lennard-Jones (LJ) potential parameters, the surface structures of substrates, the thickness values of films and the shapes of films, the influences of these variables on wetting properties of liquid silver on graphene are studied. The results show that the dewetting of liquid silver occurs on graphene, implying that the wettability of liquid silver is weak, and that the potential parameters, the surface structure of substrates, the thickness of film and the shape of film have great influences on the wettability and morphology evolution of film: the change of these factors can affect the dewetting properties of liquid silver, which is evident by the detachment time and detachment speed. With the increase of LJ potential parameters, the detachment time is larger while the contraction speed and the detachment speed are smaller. Compared with the detachment times on different carbon-based substrates, the detachment time is small on the pillared graphene, followed by the vertical carbon nanotube, and the detachment time is large on the graphene. With increasing the thickness of the film, the detachment time becomes larger. The detachment time of the circle film is smaller than those of the regular hexagon film and square film, manifesting that the films with smooth boundary are beneficial to separating from the substrate. Moreover, by setting a system of two liquid films, we study the formation of silver bridge of two films and the fracture or fusion of the bridge. When two liquid films initially contact each other, the liquid bridge forms. However, the growth behaviors of liquid bridges are different from each other, some liquid bridges become slim and finally fractures, other liquid bridges do not fracture and help two droplets form one bigger drop. These different behaviors mainly depend on the size of film. This study is very valuable for well understanding the superhydrophobic surfaces and the morphological evolutions of Ag films on the graphene. Furthermore, these findings can provide an effective method to control the dewetting behavior of liquid Ag and the fracture or fusion of the two liquid drops by tuning the size of the films.
      通信作者: 李辉, lihuilmy@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:51671114)资助的课题.
      Corresponding author: Li Hui, lihuilmy@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51671114).
    [1]

    DiMasi E, Tostmann H, Shpyrko O G, Huber P, Ocko B M, Pershan P S, Deutsch M, Berman L E 2001 Phys. Rev. Lett. 86 1538

    [2]

    James W M, George P D 1927 J. Am. Chem. Soc. 49 2230

    [3]

    Adamson A W 1976 Physical Chemistry of Surface (3rd Ed.) (New York: John Wiley) pp225-230

    [4]

    Adamson A W, Gast A P 1997 Physical Chemistry of Surface (6th Ed.) (New York: John Wiley) pp225-230

    [5]

    Guggenheim E A, Adam N K 1933 Proc. R. Soc. London 139 218

    [6]

    Guggenheim E A 1940 Trans. Faraday Soc. 36 397

    [7]

    Zhang F T 2001 J. Colloid Interface Sci. 244 271

    [8]

    Feng X J, Jiang L 2006 Adv. Mater. 18 3063

    [9]

    Zhang X Y, Zhao N, Liang S M, Lu X Y, Li X F, Xie Q D, Zhang X L, Xu J 2008 Adv. Mater. 20 2938

    [10]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699

    [11]

    Barthlott W, Neinhuis C 1997 Planta 202 1

    [12]

    Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L 2004 Angew. Chem. Int. Edit. 43 2012

    [13]

    Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J 2005 Science 309 2043

    [14]

    Afkhami S, Kondic L 2013 Phys. Rev. Lett. 111 034501

    [15]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [16]

    Nosonovsky M 2007 Langmuir 23 3157

    [17]

    Ren W 2014 Langmuir 30 2879

    [18]

    Li T, Li J, Wang L, Duan Y R, Li H 2016 Sci. Rep. 6 34074

    [19]

    Weltsch Z, Lovas A, Takacs J, Cziraki A, Toth A, Kaptay G 2013 Appl. Surf. Sci. 268 52

    [20]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [21]

    Zang D Y, Wang X L, Geng X G, Zhang W J, Chen Y M 2013 Soft Matter 9 394

  • [1]

    DiMasi E, Tostmann H, Shpyrko O G, Huber P, Ocko B M, Pershan P S, Deutsch M, Berman L E 2001 Phys. Rev. Lett. 86 1538

    [2]

    James W M, George P D 1927 J. Am. Chem. Soc. 49 2230

    [3]

    Adamson A W 1976 Physical Chemistry of Surface (3rd Ed.) (New York: John Wiley) pp225-230

    [4]

    Adamson A W, Gast A P 1997 Physical Chemistry of Surface (6th Ed.) (New York: John Wiley) pp225-230

    [5]

    Guggenheim E A, Adam N K 1933 Proc. R. Soc. London 139 218

    [6]

    Guggenheim E A 1940 Trans. Faraday Soc. 36 397

    [7]

    Zhang F T 2001 J. Colloid Interface Sci. 244 271

    [8]

    Feng X J, Jiang L 2006 Adv. Mater. 18 3063

    [9]

    Zhang X Y, Zhao N, Liang S M, Lu X Y, Li X F, Xie Q D, Zhang X L, Xu J 2008 Adv. Mater. 20 2938

    [10]

    Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699

    [11]

    Barthlott W, Neinhuis C 1997 Planta 202 1

    [12]

    Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L 2004 Angew. Chem. Int. Edit. 43 2012

    [13]

    Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J 2005 Science 309 2043

    [14]

    Afkhami S, Kondic L 2013 Phys. Rev. Lett. 111 034501

    [15]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [16]

    Nosonovsky M 2007 Langmuir 23 3157

    [17]

    Ren W 2014 Langmuir 30 2879

    [18]

    Li T, Li J, Wang L, Duan Y R, Li H 2016 Sci. Rep. 6 34074

    [19]

    Weltsch Z, Lovas A, Takacs J, Cziraki A, Toth A, Kaptay G 2013 Appl. Surf. Sci. 268 52

    [20]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [21]

    Zang D Y, Wang X L, Geng X G, Zhang W J, Chen Y M 2013 Soft Matter 9 394

  • [1] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [4] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [8] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学. 物理学报, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [9] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [10] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [11] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [12] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟. 物理学报, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [13] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [15] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [16] 宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏. 含氢碳膜的生长机制: 分子动力学模拟研究低能量CH基团的作用. 物理学报, 2012, 61(3): 030701. doi: 10.7498/aps.61.030701
    [17] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [18] 马天宝, 胡元中, 王 慧. 超薄类金刚石膜生长和结构特性的分子动力学模拟. 物理学报, 2006, 55(6): 2922-2927. doi: 10.7498/aps.55.2922
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究. 物理学报, 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
计量
  • 文章访问数:  6002
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

/

返回文章
返回