搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义(3+1)维Zakharov-Kuznetsov方程的对称约化、精确解和守恒律

张丽香 刘汉泽 辛祥鹏

引用本文:
Citation:

广义(3+1)维Zakharov-Kuznetsov方程的对称约化、精确解和守恒律

张丽香, 刘汉泽, 辛祥鹏

Symmetry reductions, exact equations and the conservation laws of the generalized (3+1) dimensional Zakharov-Kuznetsov equation

Zhang Li-Xiang, Liu Han-Ze, Xin Xiang-Peng
PDF
导出引用
  • 运用李群分析,得到了广义(3+1)维Zakharov-Kuznetsov(ZK)方程的对称及约化方程,结合齐次平衡原理,试探函数法和指数函数法得到了该方程的群不变解和新精确解,包括冲击波解、孤立波解等. 进一步给出了广义(3+1)维ZK方程的伴随方程和守恒律.
    Because the nonlinear evolution equations can describe the complex phenomena of physical, chemical and biological field, many methods have been proposed for investigating such types of equations, and the Lie symmetry analysis method is one of the powerful tools for studying the nonlinear evolution equations. By using the Lie symmetry analysis method, we can obtain the symmetries, reduced equations, group invariant solutions, conservation laws, etc. In the reduction process, we can reduce the order and dimension of the equations, and a complex partial differential equations (PDE) can be reduced to ordinary differential equations directly, which simplifies the solving process. Meanwhile, the symmetries, conservation laws and exact solutions to the nonlinear partial differential equations play a significant role in nonlinear science and mathematical physics. For example, we can obtain a lot of new exact solutions by the known symmetries of the original equation; through the analysis of the special form of solution we can better explain some physical phenomena. In addition, the studying of conservation laws and symmetry groups is also the central topic of physical sciencein both classical mechanics and quantum mechanics. Lie symmetry analysis method is suitable for not only constant coefficient equations, but also variable coefficient equations and PDE systems. By using Lie symmetry analysis method, the symmetries and corresponding symmetry reductions of the (3+1) dimensional generalized Zakharov-Kuzetsov (ZK) equation are obtained. Combining the homogeneous balance principle, the trial function method and exponential function method, the group invariant solutions and some new exact explicit solutions are obtained, including the shock wave solutions, solitary wave solutions, etc. Then, we give the conservation laws of the generalized (3+1) dimensional ZK equation in terms of the Lagrangian and adjoint equation method.
      通信作者: 刘汉泽, hnz_liu@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11171041,11505090)资助的课题.
      Corresponding author: Liu Han-Ze, hnz_liu@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11171041, 11505090).
    [1]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) pp186-206

    [2]

    Tian C 2001 Applications of Lie Groups to Differential Equations (Beijing: Science Press) pp243-248 (in Chinese) [田畴 2001 李群及其在微分方程中的应用 (北京: 科学出版社) 第243-248页]

    [3]

    Cao L M, Si X H, Zheng L C 2016 J. Appl. Math. Mech. 37 433

    [4]

    Li D S, Zhang H Q 2005 Acta Phys. Sin. 54 1569 (in Chinese) [李德生, 张鸿庆 2005 物理学报 54 1569]

    [5]

    Hirota R, Satsuma J 1976 Suppl. Prog. Theor. Phys. 59 64

    [6]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [7]

    Clarkson P 1989 J. Math. Phys. 30 2201

    [8]

    Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129

    [9]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [10]

    Pan J T, Gong L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷, 龚伦训 2007 物理学报 56 5585]

    [11]

    Pang J, Bian C Q, Chao L 2010 Appl. Math. Mech. 30 884 (in Chinese) [庞晶, 边春泉, 朝鲁 2010 应用数学和力学 30 884]

    [12]

    Naher H, Abdullah F A 2014 Res. J. Appl. Sci. Eng. Technol. 7 4864

    [13]

    Han Z, Zhang Y F, Zhao Z L 2013 Commun. Theor. Phys. 60 699

    [14]

    Xu F, Yan W, Chen Y L 2009 Comput. Math. Appl. 58 2307

    [15]

    Wazwaz A M 2005 Commun. Nonlinear Sci. Numer. Simul. 10 97

    [16]

    Liu S S, Fu Z T, Liu S D, Zhao Q 2001 Appl. Math. Mech. 22 281 (in Chinese) [刘式适, 付遵涛, 刘式达, 赵强 2001 应用数学和力学 22 281]

    [17]

    He J H, Wu X H 2006 Chaos, Solitions and Fractals 30 700

    [18]

    Zhang H Q 2001 J. Math. Phys. 21A 321 (in Chinese) [张辉群 2001 数学物理学报 21A 321]

    [19]

    Wang M L, Zhou Y Z, Li Z B 1996 Phys. Lett. A 216 67

    [20]

    Wang M L, Li Z B, Zhou Y B 1999 J. Lanzhou Univ. 35 8 (in Chinese) [王明亮, 李志斌, 周宇斌 1999 兰州大学学报 35 8]

    [21]

    Ibragimov Z H 2006 J. Math. Anal. Appl. 318 742

    [22]

    Ibragimov Z H 2007 J. Math. Anal. Appl. 333 311

    [23]

    Xi X P, Chen Y 2013 Commun. Theor. Phys. 59 573

    [24]

    Li K H, Liu H Z, Xin X P 2016 Acta Phys. Sin. 65 140201 (in Chinese) [李凯辉, 刘汉泽, 辛祥鹏 2016 物理学报 65 140201]

  • [1]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) pp186-206

    [2]

    Tian C 2001 Applications of Lie Groups to Differential Equations (Beijing: Science Press) pp243-248 (in Chinese) [田畴 2001 李群及其在微分方程中的应用 (北京: 科学出版社) 第243-248页]

    [3]

    Cao L M, Si X H, Zheng L C 2016 J. Appl. Math. Mech. 37 433

    [4]

    Li D S, Zhang H Q 2005 Acta Phys. Sin. 54 1569 (in Chinese) [李德生, 张鸿庆 2005 物理学报 54 1569]

    [5]

    Hirota R, Satsuma J 1976 Suppl. Prog. Theor. Phys. 59 64

    [6]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [7]

    Clarkson P 1989 J. Math. Phys. 30 2201

    [8]

    Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129

    [9]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [10]

    Pan J T, Gong L X 2007 Acta Phys. Sin. 56 5585 (in Chinese) [潘军廷, 龚伦训 2007 物理学报 56 5585]

    [11]

    Pang J, Bian C Q, Chao L 2010 Appl. Math. Mech. 30 884 (in Chinese) [庞晶, 边春泉, 朝鲁 2010 应用数学和力学 30 884]

    [12]

    Naher H, Abdullah F A 2014 Res. J. Appl. Sci. Eng. Technol. 7 4864

    [13]

    Han Z, Zhang Y F, Zhao Z L 2013 Commun. Theor. Phys. 60 699

    [14]

    Xu F, Yan W, Chen Y L 2009 Comput. Math. Appl. 58 2307

    [15]

    Wazwaz A M 2005 Commun. Nonlinear Sci. Numer. Simul. 10 97

    [16]

    Liu S S, Fu Z T, Liu S D, Zhao Q 2001 Appl. Math. Mech. 22 281 (in Chinese) [刘式适, 付遵涛, 刘式达, 赵强 2001 应用数学和力学 22 281]

    [17]

    He J H, Wu X H 2006 Chaos, Solitions and Fractals 30 700

    [18]

    Zhang H Q 2001 J. Math. Phys. 21A 321 (in Chinese) [张辉群 2001 数学物理学报 21A 321]

    [19]

    Wang M L, Zhou Y Z, Li Z B 1996 Phys. Lett. A 216 67

    [20]

    Wang M L, Li Z B, Zhou Y B 1999 J. Lanzhou Univ. 35 8 (in Chinese) [王明亮, 李志斌, 周宇斌 1999 兰州大学学报 35 8]

    [21]

    Ibragimov Z H 2006 J. Math. Anal. Appl. 318 742

    [22]

    Ibragimov Z H 2007 J. Math. Anal. Appl. 333 311

    [23]

    Xi X P, Chen Y 2013 Commun. Theor. Phys. 59 573

    [24]

    Li K H, Liu H Z, Xin X P 2016 Acta Phys. Sin. 65 140201 (in Chinese) [李凯辉, 刘汉泽, 辛祥鹏 2016 物理学报 65 140201]

  • [1] 李凯辉, 刘汉泽, 辛祥鹏. 一类高阶非线性波方程的李群分析、最优系统、精确解和守恒律. 物理学报, 2016, 65(14): 140201. doi: 10.7498/aps.65.140201
    [2] 刘勇, 刘希强. 变系数Whitham-Broer-Kaup方程组的对称、约化及精确解. 物理学报, 2014, 63(20): 200203. doi: 10.7498/aps.63.200203
    [3] 王振立, 刘希强. Kaup-Kupershmidt方程的非局域对称及新的精确解. 物理学报, 2014, 63(18): 180205. doi: 10.7498/aps.63.180205
    [4] 万晖. 带源项的变系数非线性反应扩散方程的精确解 . 物理学报, 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [5] 尹君毅. 扩展的(G/G)展开法和Zakharov方程组的新精确解. 物理学报, 2013, 62(20): 200202. doi: 10.7498/aps.62.200202
    [6] 李宁, 刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解. 物理学报, 2013, 62(16): 160203. doi: 10.7498/aps.62.160203
    [7] 雷军, 马松华, 方建平. (3+1)维Jimbo-Miwa方程的精确解及局域激发. 物理学报, 2011, 60(12): 120507. doi: 10.7498/aps.60.120507
    [8] 杨征, 马松华, 方建平. (2+1)维 Zakharov-Kuznetsov 方程的精确解和孤子结构. 物理学报, 2011, 60(4): 040508. doi: 10.7498/aps.60.040508
    [9] 套格图桑, 斯仁道尔吉. 构造变系数非线性发展方程精确解的一种方法. 物理学报, 2009, 58(4): 2121-2126. doi: 10.7498/aps.58.2121
    [10] 套格图桑, 斯仁道尔吉. 辅助方程构造带强迫项变系数组合KdV方程的精确解. 物理学报, 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [11] 毛杰健, 杨建荣. 变系数广义KdV方程新的类孤波解和精确解. 物理学报, 2007, 56(9): 5049-5053. doi: 10.7498/aps.56.5049
    [12] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [13] 韩兆秀. 非线性Klein-Gordon方程新的精确解. 物理学报, 2005, 54(4): 1481-1484. doi: 10.7498/aps.54.1481
    [14] 智红燕, 王 琪, 张鸿庆. (2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解. 物理学报, 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [15] 曾 昕, 张鸿庆. (2+1)维Boussinesq方程的Backlund变换与精确解. 物理学报, 2005, 54(4): 1476-1480. doi: 10.7498/aps.54.1476
    [16] 刘成仕, 杜兴华. 耦合Klein-Gordon-Schr?dinger方程新的精确解. 物理学报, 2005, 54(3): 1039-1043. doi: 10.7498/aps.54.1039
    [17] 陆法林, 陈昌远. 非球谐振子势Schr?dinger方程的精确解. 物理学报, 2004, 53(3): 688-692. doi: 10.7498/aps.53.688
    [18] 黄定江, 张鸿庆. 扩展的双曲函数法和Zakharov方程组的新精确孤立波解. 物理学报, 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [19] 李德生, 张鸿庆. 非线性耦合标量场方程的新双周期解(Ⅰ). 物理学报, 2003, 52(10): 2373-2378. doi: 10.7498/aps.52.2373
    [20] 石玉仁, 吕克璞, 段文山, 洪学仁, 赵金保, 杨红娟. 组合KdV方程的显式精确解. 物理学报, 2003, 52(2): 267-270. doi: 10.7498/aps.52.267
计量
  • 文章访问数:  3575
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-01
  • 修回日期:  2017-01-02
  • 刊出日期:  2017-04-05

广义(3+1)维Zakharov-Kuznetsov方程的对称约化、精确解和守恒律

  • 1. 聊城大学数学科学学院, 聊城 252059
  • 通信作者: 刘汉泽, hnz_liu@aliyun.com
    基金项目: 国家自然科学基金(批准号:11171041,11505090)资助的课题.

摘要: 运用李群分析,得到了广义(3+1)维Zakharov-Kuznetsov(ZK)方程的对称及约化方程,结合齐次平衡原理,试探函数法和指数函数法得到了该方程的群不变解和新精确解,包括冲击波解、孤立波解等. 进一步给出了广义(3+1)维ZK方程的伴随方程和守恒律.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回