搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交互模式的柔性体接触碰撞动力学建模方法

王检耀 刘铸永 洪嘉振

引用本文:
Citation:

基于交互模式的柔性体接触碰撞动力学建模方法

王检耀, 刘铸永, 洪嘉振

Dynamic modeling method of flexible bodies with contact/impact based on interactive mode

Wang Jian-Yao, Liu Zhu-Yong, Hong Jia-Zhen
PDF
导出引用
  • 目前对于任意形状的柔性体接触碰撞问题,一般采用有限元离散,通用的建模方法有两类:罚函数法和附加约束法.罚函数法将接触作用视为弹簧阻尼力元,无需求解约束方程,但依赖于碰撞力参数的选取;附加约束法可严格满足接触约束条件,但数值求解更为复杂.针对两类接触模型各自的优缺点,提出基于交互模式的建模方法.该方法将整个模型分为局部静力学模块和主体动力学模块,在每个积分步内,局部静力学模块求解接触力,主体动力学模块求解运动学变量,两个模型之间进行位移和力的交互.该方法综合了附加约束法和罚函数法各自的优点,既无需人为选取碰撞参数,又满足局部区域互不嵌入的约束条件,同时数值求解方便.通过杆-板碰撞的实验算例及滑块-滑槽多点碰撞的数值算例,验证了该方法的有效性.
    To solve the contact/impact problem of flexible bodies in arbitrary shape, the finite element method is widely used to discretize the contact bodies. In the finite element method, two contact models are mainly used to compute the contact force, i.e., penalty function method and additional constraint method, which are different in constraint imposition strategy. The penalty function method regards the contact effect as a force function of local penetration at the contact point and its rate. This method has gained significant popularity because it does not bring extra dimensions to the dynamic equations and does not need to solve constraint equations either. However, as the non-penetration constraint is not precisely satisfied in the contact process when using the penalty function method, the accuracy of the numerical simulation depends on the choice of the penalty parameter. On the other hand, the additional constraint method can strictly satisfy the contact constraint condition by introducing the Lagrange multipliers into the dynamic equations, but the method poses some numerical difficulties due to the additional effort required to solve the multipliers. Considering the advantages and disadvantages of the two contact methods, the interactive mode method is proposed. This method divides the whole model into local static module and main dynamics module. The static module establishes a local finite element model of the contact region to compute the contact force, and the main dynamics module is used to obtain the kinematic variables of the whole body. In the simulation, the two modules are coupled by exchanging displacements and forces in each time step. In the current integration step, the main dynamics module provides the displacements of the boundaries of the local contact region at first, the values are transferred to the local finite model to compute the contact force next, and then the contact force is fed back to the dynamics module for the calculation of the next step. The proposed method combines the advantages of both the additional constraint method and the penalty function method, in which not only the artificial selection of penalty parameter is avoided, but also the non-penetration constraint of local contact region is satisfied and the numerical solution is convenient. The validity of the proposed method is verified by the comparison between simulation results and experimental results of a rod-plate impact case. Furthermore, a multi-point impact problem of a slider sliding in the gap chute is presented to validate the proposed method of dealing with the general impact problem.
      通信作者: 刘铸永, zhuyongliu@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11132007,11202126)资助的课题.
      Corresponding author: Liu Zhu-Yong, zhuyongliu@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11132007,11202126).
    [1]

    Klisch T 1998 Multibody Syst. Dyn. 2 335

    [2]

    Ambrsio J, Pombo J, Rauter F, Pereira M 2009 Multibody Dynamics: Computational Methods and Applications (Dordrecht: Springer Netherlands) p231

    [3]

    Flores P, Koshy C, Lankarani H, Ambrsio J, Claro J C P 2011 Nonlinear Dynam. 65 383

    [4]

    Lundberg O E, Nordborg A, Arteaga I L 2016 J. Sound Vib. 366 429

    [5]

    Wang X H, Wang Q 2015 Chin. J. Theor. Appl. Mech. 47 814 (in Chinese) [王晓军, 王琪 2015 力学学报 47 814]

    [6]

    Tur M, Fuenmayor F J, Wriggers P 2009 Comput. Method Appl. M. 198 2860

    [7]

    Duan Y C, Zhang D G, Hong J Z 2013 Appl. Math. Mech. Engl. 34 1393

    [8]

    Chen P, Liu J Y, Hong J Z 2016 Acta Mech. Sin. 32 1

    [9]

    Weyler R, Oliver J, Sain T, Cante J C 2012 Comput. Method Appl. M. 205 68

    [10]

    Tian Q, Zhang Y, Chen L, Flore P 2009 Comput. Struct. 87 913

    [11]

    Qian Z J, Zhang D G 2015 J. Vib. Eng. 28 879 (in Chinese) [钱震杰, 章定国 2015 振动工程学报 28 879]

    [12]

    Zhang J, Wang Q 2016 Multibody Syst. Dyn. 38 367

    [13]

    Yang Y F, Feng H B, Chen H, Wu M J 2016 Acta Phys. Sin. 65 240502 (in Chinese) [杨永锋, 冯海波, 陈虎, 仵敏娟 2016 物理学报 65 240502]

    [14]

    Brenan K E, Campbell S L, Petzold L R 1996 Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (Philadelphia: SIAM) p45

    [15]

    Dong F X, Hong J Z, Zhu K, Yu Z Y 2010 Acta Mech. Sin. 26 635

    [16]

    Dan N, Haug E J, German H C 2003 Multibody Syst. Dyn. 9 121

    [17]

    Taylor R L, Papadopoulos P 2010 Int. J. Numer. Meth. Eng. 36 2123

    [18]

    Seifried R, Hu B, Eberhard P 2003 Multibody Syst. Dyn. 9 265

    [19]

    Hong J Z 1999 Computational Dynamics of Multibody Systems (Beijing: Higher Education Press) p53 (in Chinese) [洪嘉振 1999计算多体系统动力学(北京:高等教育出版社) 第53页]

    [20]

    Gradin M, Cardona A 2001 Flexible Multibody Dynamics: a Finite Element Approach (Chichester: John Wiley) p144

  • [1]

    Klisch T 1998 Multibody Syst. Dyn. 2 335

    [2]

    Ambrsio J, Pombo J, Rauter F, Pereira M 2009 Multibody Dynamics: Computational Methods and Applications (Dordrecht: Springer Netherlands) p231

    [3]

    Flores P, Koshy C, Lankarani H, Ambrsio J, Claro J C P 2011 Nonlinear Dynam. 65 383

    [4]

    Lundberg O E, Nordborg A, Arteaga I L 2016 J. Sound Vib. 366 429

    [5]

    Wang X H, Wang Q 2015 Chin. J. Theor. Appl. Mech. 47 814 (in Chinese) [王晓军, 王琪 2015 力学学报 47 814]

    [6]

    Tur M, Fuenmayor F J, Wriggers P 2009 Comput. Method Appl. M. 198 2860

    [7]

    Duan Y C, Zhang D G, Hong J Z 2013 Appl. Math. Mech. Engl. 34 1393

    [8]

    Chen P, Liu J Y, Hong J Z 2016 Acta Mech. Sin. 32 1

    [9]

    Weyler R, Oliver J, Sain T, Cante J C 2012 Comput. Method Appl. M. 205 68

    [10]

    Tian Q, Zhang Y, Chen L, Flore P 2009 Comput. Struct. 87 913

    [11]

    Qian Z J, Zhang D G 2015 J. Vib. Eng. 28 879 (in Chinese) [钱震杰, 章定国 2015 振动工程学报 28 879]

    [12]

    Zhang J, Wang Q 2016 Multibody Syst. Dyn. 38 367

    [13]

    Yang Y F, Feng H B, Chen H, Wu M J 2016 Acta Phys. Sin. 65 240502 (in Chinese) [杨永锋, 冯海波, 陈虎, 仵敏娟 2016 物理学报 65 240502]

    [14]

    Brenan K E, Campbell S L, Petzold L R 1996 Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (Philadelphia: SIAM) p45

    [15]

    Dong F X, Hong J Z, Zhu K, Yu Z Y 2010 Acta Mech. Sin. 26 635

    [16]

    Dan N, Haug E J, German H C 2003 Multibody Syst. Dyn. 9 121

    [17]

    Taylor R L, Papadopoulos P 2010 Int. J. Numer. Meth. Eng. 36 2123

    [18]

    Seifried R, Hu B, Eberhard P 2003 Multibody Syst. Dyn. 9 265

    [19]

    Hong J Z 1999 Computational Dynamics of Multibody Systems (Beijing: Higher Education Press) p53 (in Chinese) [洪嘉振 1999计算多体系统动力学(北京:高等教育出版社) 第53页]

    [20]

    Gradin M, Cardona A 2001 Flexible Multibody Dynamics: a Finite Element Approach (Chichester: John Wiley) p144

  • [1] 吴琼, 任志君, 杜林岳, 胡海华, 顾颖, 杨朝凤. 基于格林函数法的奇型Mathieu-Gaussian光束. 物理学报, 2017, 66(20): 204201. doi: 10.7498/aps.66.204201
    [2] 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-法在接触约束多体系统动力学中的应用. 物理学报, 2017, 66(16): 164501. doi: 10.7498/aps.66.164501
    [3] 程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰. 变形镜高斯函数指数对迭代法自适应光学系统的影响. 物理学报, 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [4] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型. 物理学报, 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [5] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [6] 宋端. 构造Birkhoff动力学函数的Santilli第二方法的简化. 物理学报, 2014, 63(14): 144501. doi: 10.7498/aps.63.144501
    [7] 袁丽, 樊群超, 孙卫国, 范志祥, 冯灏. 用代数-能量自洽法研究双原子分子解析势能函数. 物理学报, 2014, 63(4): 043102. doi: 10.7498/aps.63.043102
    [8] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [9] 庄彬先, 郭珺, 项元江, 戴小玉, 文双春. F-函数扩展法求解超介质中的亮孤子和暗孤子. 物理学报, 2013, 62(5): 054207. doi: 10.7498/aps.62.054207
    [10] 赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析. 物理学报, 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [11] 崔金超, 宋端, 郭永新. 构造Birkhoff函数(组)的待定张量法. 物理学报, 2012, 61(24): 244501. doi: 10.7498/aps.61.244501
    [12] 毕研盟, 陈洁, 杨光林, 廖蜜, 吴荣华. 基于改进的单差法计算GPS掩星附加相位. 物理学报, 2012, 61(14): 149301. doi: 10.7498/aps.61.149301
    [13] 谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔. 反向碰撞法测量Bi的低压Hugoniot数据. 物理学报, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [14] 胡建波, 周显明, 谭 华. 反向碰撞法测量Sn的高压卸载声速. 物理学报, 2008, 57(4): 2347-2351. doi: 10.7498/aps.57.2347
    [15] 贺 锋, 郭启波, 刘 辽. 用三角函数法获得非线性Boussinesq方程的广义孤子解. 物理学报, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [16] 程愿应, 王又青, 胡 进, 李家熔. 一种新颖的用于光腔模式及光束传输模拟的特征向量法. 物理学报, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
    [17] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布. 物理学报, 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [18] 常明, 许守廉. Voigt函数法的误差分析. 物理学报, 1993, 42(3): 446-452. doi: 10.7498/aps.42.446
    [19] 朱德光, 吴鼎芬. 金属-半导体比接触电阻的圆环结构测试法. 物理学报, 1987, 36(6): 752-759. doi: 10.7498/aps.36.752
    [20] 吴式枢. 高阶无规位相近似法与格林函数方法. 物理学报, 1966, 22(3): 377-380. doi: 10.7498/aps.22.377
计量
  • 文章访问数:  14771
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 修回日期:  2017-04-13
  • 刊出日期:  2017-08-05

/

返回文章
返回