搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用一维原子链模型研究薄膜瞬态结构变化

郭鑫 李明华 李毅飞 陶梦泽 王进光 李大章 辛建国 陈黎明

引用本文:
Citation:

利用一维原子链模型研究薄膜瞬态结构变化

郭鑫, 李明华, 李毅飞, 陶梦泽, 王进光, 李大章, 辛建国, 陈黎明

Transient structure of thin films based on one-dimensional chain model

Guo Xin, Li Ming-Hua, Li Yi-Fei, Tao Meng-Ze, Wang Jin-Guang, Li Da-Zhang, Xin Jian-Guo, Chen Li-Ming
PDF
导出引用
  • 对于晶格结构响应的仿真与实验有助于我们理解激光激发引起的动态过程.利用一维原子链模型研究了激光加热后由于温度分布不均匀性产生的热应力对晶格的影响,该模型的计算结果与使用超快X射线衍射获得的实验结果相符合.该模型为研究光激发金属以及半导体等材料的超快晶格动力学提供了理论分析基础.
    Functional materials have received much attention in the development of scientific technology. Macroscopic function of material is usually linked to the microscopic properties. In order to understand the relationship between structure and function, it is necessary to observe transient structural change of material in real time. In the earlier experimental work femtosecond optical probes were used to measure associated modulation in optical properties like transmissivity or reflectivity and extract the information about structural dynamics through sophisticated theoretical modeling. Since the development of laser-based ultrafast X-ray sources, there has been extensive work on femtosecond X-ray diffraction measurements. The coupling of sensitive X-ray with time-resolved pump-probe technique provides a way to directly monitor the time-dependent lattice structural changes in condensed matter. Recent researches are devoted to the study of non-thermal melting and coherent acoustic photons. The classical continuous elastic equation can only provide a limited view of structural dynamics. So, simulation of structural dynamics at an atomic level and comparison of such simulation with time-resolved X-ray diffraction data are necessary.#br#In this paper, we use the one-dimensional chain model to study the effect of thermal stress on the lattice due to the inhomogeneity of temperature distribution after ultrafast laser heating. It is developed from the classic continuous elastic equation by considering a nanometer film as a chain of point mass connected by springs. The simulation can directly reveal the positon of each point mass (atom) as a function of time for a given temperature (stress) profile. The simulation results accord very well with experimental data obtained with femtosecond X-ray diffraction. Compared with simulation results, the ultrafast X-ray diffraction experimental results are not enough to distinguish the compression near the zero time, but the characteristic time (~123 ps) and broadening of the diffraction peak are clearly observed. The simulation and experimental study of the lattice structural response are of great help for understanding the direct relationship between the lattice responses caused by ultrafast laser excitation, the generation and propagation of strain, one-dimensional chain model has important applications in studying the recoverable ultrafast lattice dynamics of metals, semiconductors and other materials.
      通信作者: 陈黎明, lmchen@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11334013,11421064,11374210)资助的课题.
      Corresponding author: Chen Li-Ming, lmchen@iphy.ac.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11334013, 11421064, 11374210).
    [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [3]

    Chen L M, Wang W M, Kando M, Hudson L T, Liu F, Lin X X, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Zhang J 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128

    [4]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [5]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004

    [6]

    Chen X C, Zhou J P, Wang H Y, Xu P S, Pan G Q 2011 Chin. Phys. B 20 096102

    [7]

    Sokolowski T K, Blome C, Dietrich C, Tarasevitch A, Hornvon H M, Vonder L D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [8]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65

    [9]

    Schick D, Bojahr A, Herzog M, Schmising C V K, Shayduk R, Leitenberger W, Gaal P, Bargheer M 2012 Rev. Sci. Instrum. 83 025104

    [10]

    Sokolowski T K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Hornvon H M 2003 Nature 422 287

    [11]

    Chen J, Tomov I, Elsayed A, Rentzepis P 2006 Chem. Phys. Lett. 419 374

    [12]

    Chen L M, Kando M, Xu M, Li Y, Koga J, Chen M, Xu H, Yuan X, Dong Q, Sheng Z M 2008 Phys. Rev. Lett. 100 045004

    [13]

    Reich C, Uschmann I, Ewald F, Dusterer S, Lubcke A, Schwoerer H, Sauerbrey R, Forster E, Gibbon P 2003 Phys. Rev. E 68 056408

    [14]

    Tao Z S, Han T T, Subhendra D M, Phillip M D, Yuan F, Ruan C Y, Kevin W, Wu J Q 2012 Phys. Rev. Lett. 109 166406

    [15]

    Liang W X, Giovanni M V, Ahmed H Z 2014 Proc. Natl. Acad. Sci. USA 111 5491

    [16]

    Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Chen L M, Zhang J 2014 Rev. Sci. Instrum. 85 113304

    [17]

    Huang K, Yan W C, Li M H, Tao M Z, Chen Y P, Chen J, Yuan X H, Zhao J R, Ma Y, Li D Z, Gao J, Chen L M, Zhang J 2013 Acta. Phys. Sin. 62 205204(in Chinese)[黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰2013物理学报 62 205204]

    [18]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [20]

    Bargheer M, Zhavoronkov N, Gritsai Y, Woo J C, Kim D S, Woerner M, Elsaesser T 2004 Science 306 1771

  • [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Sheng Z M, Mima K, Zhang J, Sanuki H 2005 Phys. Rev. Lett. 94 095003

    [3]

    Chen L M, Wang W M, Kando M, Hudson L T, Liu F, Lin X X, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Zhang J 2010 Nucl. Instru. Meth. Phys. Res. Sect. A 619 128

    [4]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005

    [5]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004

    [6]

    Chen X C, Zhou J P, Wang H Y, Xu P S, Pan G Q 2011 Chin. Phys. B 20 096102

    [7]

    Sokolowski T K, Blome C, Dietrich C, Tarasevitch A, Hornvon H M, Vonder L D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [8]

    Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P 2001 Nature 410 65

    [9]

    Schick D, Bojahr A, Herzog M, Schmising C V K, Shayduk R, Leitenberger W, Gaal P, Bargheer M 2012 Rev. Sci. Instrum. 83 025104

    [10]

    Sokolowski T K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Hornvon H M 2003 Nature 422 287

    [11]

    Chen J, Tomov I, Elsayed A, Rentzepis P 2006 Chem. Phys. Lett. 419 374

    [12]

    Chen L M, Kando M, Xu M, Li Y, Koga J, Chen M, Xu H, Yuan X, Dong Q, Sheng Z M 2008 Phys. Rev. Lett. 100 045004

    [13]

    Reich C, Uschmann I, Ewald F, Dusterer S, Lubcke A, Schwoerer H, Sauerbrey R, Forster E, Gibbon P 2003 Phys. Rev. E 68 056408

    [14]

    Tao Z S, Han T T, Subhendra D M, Phillip M D, Yuan F, Ruan C Y, Kevin W, Wu J Q 2012 Phys. Rev. Lett. 109 166406

    [15]

    Liang W X, Giovanni M V, Ahmed H Z 2014 Proc. Natl. Acad. Sci. USA 111 5491

    [16]

    Huang K, Li M H, Yan W C, Guo X, Li D Z, Chen Y P, Ma Y, Zhao J R, Li Y F, Chen L M, Zhang J 2014 Rev. Sci. Instrum. 85 113304

    [17]

    Huang K, Yan W C, Li M H, Tao M Z, Chen Y P, Chen J, Yuan X H, Zhao J R, Ma Y, Li D Z, Gao J, Chen L M, Zhang J 2013 Acta. Phys. Sin. 62 205204(in Chinese)[黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰2013物理学报 62 205204]

    [18]

    Hohlfeld J, Wellershoff S S, Gdde J, Conrad U, Jähnke V, Matthias E 2000 Chem. Phys. 251 237

    [19]

    Anisimov S I, Kapeliovich B L, Perelman T L 1974 J. Exp. Theor. Phys. 66 776

    [20]

    Bargheer M, Zhavoronkov N, Gritsai Y, Woo J C, Kim D S, Woerner M, Elsaesser T 2004 Science 306 1771

  • [1] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] 刘旭, 黄昱, 毛婧一, 陈黎明. SrCoO2.5材料的超快应变动力学. 物理学报, 2021, 70(18): 186202. doi: 10.7498/aps.70.20210457
    [3] 王建立, 郭亮, 徐先凡, 倪中华, 陈云飞. 晶格振动的超快光谱调控. 物理学报, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [4] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃. 基于原位X射线衍射技术的动态晶格响应测量方法研究. 物理学报, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [5] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [6] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力. 物理学报, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [7] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [8] 谈国太, 陈正豪. La1-xTexMnO3晶格结构的X射线粉末衍射分析. 物理学报, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [9] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究. 物理学报, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [10] 郝建民, 陈济舟, 张世敏. 子晶格干涉畴尺寸不同对X射线衍射积分宽度与积分强度的影响. 物理学报, 1994, 43(5): 772-778. doi: 10.7498/aps.43.772
    [11] 何贤昶, 吴自勤, 赵特秀, 吕智慧, 王晓平, 孙国喜. 多孔硅层晶格畸变的X射线双晶衍射研究. 物理学报, 1993, 42(6): 954-962. doi: 10.7498/aps.42.954
    [12] 李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究. 物理学报, 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [13] 乔皓, 资剑, 徐至中, 张开明. 形变超晶格Si/Ge的能带结构. 物理学报, 1993, 42(8): 1317-1323. doi: 10.7498/aps.42.1317
    [14] 朱南昌, 李润身, 许顺生. 半导体应变超晶格结构与界面的X射线双晶衍射研究. 物理学报, 1991, 40(3): 433-440. doi: 10.7498/aps.40.433
    [15] 田亮光, 朱南昌, 陈京一, 李润身, 许顺生, 周国良. 高完整GexSi1-x/Si应变超晶格的X射线双晶衍射研究. 物理学报, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [16] 周国良, 沈孝良, 盛篪, 蒋维栋, 俞鸣人. GexSi1-x/Si超晶格的X射线小角衍射分析. 物理学报, 1991, 40(1): 56-63. doi: 10.7498/aps.40.56
    [17] 滕凤恩, 王煜明. 形变α黄铜中层错的X射线测量. 物理学报, 1989, 38(1): 118-123. doi: 10.7498/aps.38.118
    [18] 姜晓明, 吴自勤. 一维Fibonacci系列的X射线衍射峰轮廓的计算. 物理学报, 1988, 37(11): 1900-1905. doi: 10.7498/aps.37.1900
    [19] 林炳昌. 轻微形变晶体X射线衍射动力学方程的微扰解. 物理学报, 1981, 30(11): 1528-1532. doi: 10.7498/aps.30.1528
    [20] 黄昆, 莫党, 秦国刚. 电子对於原子半导体晶格的形变作用. 物理学报, 1957, 13(4): 271-293. doi: 10.7498/aps.13.271
计量
  • 文章访问数:  5389
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-06-09
  • 刊出日期:  2017-09-05

/

返回文章
返回