-
材料损伤以及性能退化与超声波的非线性效应密切相关.为研究循环温度疲劳作用下粘接界面的损伤情况,本文采用超声波透射法,研究了6061型铝合金/改性丙烯酸酯胶粘接界面的声学非线性系数随高温、低温循环次数的变化情况.结果表明,在高温循环疲劳作用的初始阶段,试件的非线性系数变化不明显,但随着高温循环次数的不断增加,非线性系数随循环次数的变化十分明显;对于低温循环疲劳作用的初始阶段,试件的非线性系数迅速增大,随着循环次数的增加,其值增速减缓.在低温循环疲劳寿命的后期,试件的非线性系数随循环次数的增加而继续增大.进一步的讨论结果表明,胶层三阶弹性常数的变化是造成高温循环疲劳时非线性系数变化的主要原因,而对于低温循环疲劳,粘接界面拉伸刚度的变化是引起非线性系数变化的主要原因.Adhesively bonded structures possess various industrial applications, such as safety-critical structures in the aerospace and automotive industries. With the increasing using of adhesive joints, corresponding methods of evaluating and testing the structural integrity and quality of bonded joints have been widely investigated and developed for the structural health monitoring. Studies show that the damage and degradation of material are closely related to the nonlinearity of ultrasonic waves propagating within the material. In this paper, for the evaluating of the damage to bonding interface under cyclic temperature fatigue, acoustic nonlinear parameters (ANPs) of specimens made of aluminum alloy 6061 and modified acrylate adhesive are measured experimentally by using the nonlinear ultrasonic technique; and thus the variations of the ANPs with the fatigue time under high and low cyclic temperature are obtained for the bonded specimens. The study shows that the ANP, which serves as an indicator of material properties, remains nearly unchanged in the initial stage of high temperature cyclic fatigue test, and the ANP obviously increases with temperature cyclic time increasing. For low temperature cyclic fatigue test, the ANP increases rapidly with the increase of temperature cyclic time in the initial stage, and its value growth slows down in the later stage. Further discussion shows that the increase of third order elastic constant is the main reason for the change of ANP for high temperature cyclic fatigue, and that the change of the tensile stiffness of the bonding interface is the main source for the change of the ANP for low temperature cyclic fatigue. It is shown that the ANP based on the theoretical model increases consistently with the experimentally measured values. The present research is expected to provide a promising way of characterizing and monitoring the damage to bonding interface under cyclic temperature fatigue.
-
Keywords:
- adhesively bonding interface /
- cyclic temperature fatigue /
- acoustic nonlinear parameter /
- ultrasonic nondestructive evaluation
[1] Sun D L, Yu X C 2014 Adhesive and Adhesive Technology Foundation (Beijing: Chemical Industry Press) p5 (in Chinese) [孙德林, 余先纯 2014 胶黏剂与粘接技术基础 (北京:化学工业出版社) 第5页]
[2] Qin W, Li L, Ye Z Y, L G, He S Y 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]
[3] Xie M, Gao J M, Du Q, Wu S H, Qin Y K 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]
[4] Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303 (in Chinese) [刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303]
[5] Jordan P M 2006 J. Phys. Lett. A 355 216
[6] Nazarov V E, Sutin A M 1997 J. Acoust. Soc. Am. 102 3349
[7] Buck O 1976 IEEE Trans. Sonics Ultrason. 23 346
[8] Shui G S, Wang Y S, Qu J M 2005 Adv. Mech. 35 52 (in Chinese) [税国双, 汪越胜, 曲建民 2005 力学进展 35 52]
[9] An Z W, Wang X M, Mao J, Li M X, Deng M X 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]
[10] Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys.Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]
[11] Liu J, Xu W J, Hu W X 2016 Acta Phys. Sin. 65 074301 (in Chinese) [刘婧, 徐卫疆, 胡文祥 2016 物理学报 65 074301]
[12] Shui G, Wang Y S, Huang P, Qu J 2017 J. Nondestruct Eval. 36 23
[13] Shui G, Song X, Xi J Y, Wang Y S 2017 J. Nondestruct Eval. 36 23
[14] Donskoy D, Sutin A, Ekimov A 1998 Int. J. Fatigue 20 9
[15] Yan D, Drinkwater B W, Neild S A 2009 NDT & E International 42 459
[16] Kawashima K, Murase M, Yamada R, Matsushima M, Uematsu M, Fujita F 2006 Ultrasonics 44 1329
[17] Abeele E A V D, Sutin A, Carmeliet J, Johnson P A 2001 NDT & E International 34 239
[18] Ju T, Achenbach J D, Jacobs L J, Qu J 2017 AIP Conference Proceedings 1806 020011
[19] Li X G, Gao J, Zhang S P, Du C W, Lu L 2011 Aging Law and Mechanism of Natural Environment of Polymer Materials (Beijing: Science Press) p256 (in Chinese) [李晓刚, 高瑾, 张三平, 杜翠薇, 卢琳 2011 高分子材料自然环境老化规律与机理 (北京: 科学出版社) 第 256 页]
[20] Wu Y X, Chen W Y 2005 J. Taiyuan Univ. Technol. 36 654 (in Chinese) [武艳霞, 陈维毅 2005 太原理工大学学报 36 654]
[21] Landau L D, Lifshitz E M 1986 Theory of Elasticity (3rd Ed.) (Oxford: Pergamon Press)
[22] Norris A N 1998 in: Hamilton M F and Blackstock D T eds. Nonlinear Acoustics (San Diego CA: Academic Press)
[23] Gol'Dberg Z A 1961 Sov. Phys. Acoust. 6 306
[24] Thurston R N 1984 in: Truesdell C eds. Mechanics of Solids (Berlin: Springer-Verlag) p109
[25] Fatemi A, Yang L 1998 Int. J. Fatigue 20 9
[26] Cui W 2002 J. Mar. Sci. Technol. 7 43
[27] Xu J Q, Guo F M 2010 J. Mech. Eng. 46 40 (in Chinese) [许金泉, 郭凤明 2010 机械工程学报 46 40]
-
[1] Sun D L, Yu X C 2014 Adhesive and Adhesive Technology Foundation (Beijing: Chemical Industry Press) p5 (in Chinese) [孙德林, 余先纯 2014 胶黏剂与粘接技术基础 (北京:化学工业出版社) 第5页]
[2] Qin W, Li L, Ye Z Y, L G, He S Y 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]
[3] Xie M, Gao J M, Du Q, Wu S H, Qin Y K 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]
[4] Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303 (in Chinese) [刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303]
[5] Jordan P M 2006 J. Phys. Lett. A 355 216
[6] Nazarov V E, Sutin A M 1997 J. Acoust. Soc. Am. 102 3349
[7] Buck O 1976 IEEE Trans. Sonics Ultrason. 23 346
[8] Shui G S, Wang Y S, Qu J M 2005 Adv. Mech. 35 52 (in Chinese) [税国双, 汪越胜, 曲建民 2005 力学进展 35 52]
[9] An Z W, Wang X M, Mao J, Li M X, Deng M X 2015 Acta Phys. Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]
[10] Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys.Sin. 64 224301 (in Chinese) [高广健, 邓明晰, 李明亮, 刘畅 2015 物理学报 64 224301]
[11] Liu J, Xu W J, Hu W X 2016 Acta Phys. Sin. 65 074301 (in Chinese) [刘婧, 徐卫疆, 胡文祥 2016 物理学报 65 074301]
[12] Shui G, Wang Y S, Huang P, Qu J 2017 J. Nondestruct Eval. 36 23
[13] Shui G, Song X, Xi J Y, Wang Y S 2017 J. Nondestruct Eval. 36 23
[14] Donskoy D, Sutin A, Ekimov A 1998 Int. J. Fatigue 20 9
[15] Yan D, Drinkwater B W, Neild S A 2009 NDT & E International 42 459
[16] Kawashima K, Murase M, Yamada R, Matsushima M, Uematsu M, Fujita F 2006 Ultrasonics 44 1329
[17] Abeele E A V D, Sutin A, Carmeliet J, Johnson P A 2001 NDT & E International 34 239
[18] Ju T, Achenbach J D, Jacobs L J, Qu J 2017 AIP Conference Proceedings 1806 020011
[19] Li X G, Gao J, Zhang S P, Du C W, Lu L 2011 Aging Law and Mechanism of Natural Environment of Polymer Materials (Beijing: Science Press) p256 (in Chinese) [李晓刚, 高瑾, 张三平, 杜翠薇, 卢琳 2011 高分子材料自然环境老化规律与机理 (北京: 科学出版社) 第 256 页]
[20] Wu Y X, Chen W Y 2005 J. Taiyuan Univ. Technol. 36 654 (in Chinese) [武艳霞, 陈维毅 2005 太原理工大学学报 36 654]
[21] Landau L D, Lifshitz E M 1986 Theory of Elasticity (3rd Ed.) (Oxford: Pergamon Press)
[22] Norris A N 1998 in: Hamilton M F and Blackstock D T eds. Nonlinear Acoustics (San Diego CA: Academic Press)
[23] Gol'Dberg Z A 1961 Sov. Phys. Acoust. 6 306
[24] Thurston R N 1984 in: Truesdell C eds. Mechanics of Solids (Berlin: Springer-Verlag) p109
[25] Fatemi A, Yang L 1998 Int. J. Fatigue 20 9
[26] Cui W 2002 J. Mar. Sci. Technol. 7 43
[27] Xu J Q, Guo F M 2010 J. Mech. Eng. 46 40 (in Chinese) [许金泉, 郭凤明 2010 机械工程学报 46 40]
计量
- 文章访问数: 6922
- PDF下载量: 237
- 被引次数: 0