搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚波长间距理想导体球阵列近区时间反演电磁场的快速求解

龚志双 王秉中 王任

引用本文:
Citation:

亚波长间距理想导体球阵列近区时间反演电磁场的快速求解

龚志双, 王秉中, 王任

Fast solution of near-field time reversal electromagnetic field of sub-wavelength perfect conducting ball arrays

Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren
PDF
导出引用
  • 为快速求解亚波长间距分布的理想导体球阵列近区的时间反演电磁场,提出一种基于等效偶极子模型的解析分析方法.首先,通过分析球面波照射理想导体小球的散射场解析解发现,散射场可以近似等效为电磁偶极子辐射场的叠加.等效偶极子的强度与初始激励源的幅度成正比关系.通过建立不同小球等效偶极子矢量间的耦合方程组可以直接求解得到相应矢量的大小.然后,结合时间反演腔理论得到相应的时间反演并矢格林函数,继而得到小球阵列近区的时间反演场分布.最后,通过与数值仿真软件的计算结果进行对比,验证了方法的正确性及高效性.研究表明,时间反演技术结合近场亚波长间距小散射体加载能够实现超分辨率的场聚焦.
    To solve the near-field time reversal electromagnetic fields of sub-wavelength perfect conducting ball arrays rapidly, an analytical formulation is presented based on the equivalent dipole model. As is well known, the efficient use of evanescent information is the key to the realization of sub-wavelength focusing and imaging. However, evanescent components always suffer exponential decays with the increase of propagating distance. Therefore, in order to effectively control the evanescent waves, some measures should be taken in the near field region of the scatters before their amplitudes are reduced to an undetectable level. Since small perfect conducting ball is the basic component of large scatter, the first step should be to study the scattering properties of small perfect conducting ball. The far-field scattering fields of perfect conducting balls have been analyzed for plane waves. However, for spherical waves, the analytical results are not convenient to extend to multi-ball situation since they are all expressed by series. In this paper, the analytical solution to scattering field of the small perfect conducting balls irradiated by spherical radiative waves is analyzed. The result shows that the scattering fields can be approximately equivalent to the superposition of the radiation fields of electrical and magnetic dipoles in some restrictive conditions. The intensity of the equivalent dipole is proportional to the magnitude of the original excitation source dipole. Therefore all the equivalent dipole moments can be calculated easily by setting up the coupling equations between different equivalent dipoles and source dipole. Then, the forward dyadic Green's function can be obtained by combining the vacuum electrical and magnetic Green's function. At the same time, the time reversal dyadic Green's function can be derived through the time reversal cavity theory. Afterwards, the near-field time reversal electromagnetic field of the perfect conductive ball arrays can be calculated directly by the time reversal dyadic Green's function. The results obtained from the proposed method and a numerical software are compared, which shows that a coincidence extent reaches more than 0.95. This confirms the correctness and high efficiency of the proposed method. After that, an imaging experiment is implemented and the result shows that an imaging resolution of 0.3 can be obtained by loading small conducting balls in the near field. All these experiments show that combined with near-field loading of sub-wavelength scatterer arrays, the time reversal technique has the potential to realize super-resolution focusing and imaging.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61331007)资助的课题.
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61331007).
    [1]

    Parvulescu A, Clay C S 1965 Radio Electron. Eng. 29 223

    [2]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555

    [3]

    de Rosny J, Fink M 2007 Phys. Rev. A 76 065801

    [4]

    Fang N, Liu Z, Yen T J, Zhang X 2003 Opt. Express 11 682

    [5]

    Liu Z, Fang N, Yen T J, Zhang X 2003 Appl. Phys. Lett. 83 5184

    [6]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [8]

    Malyuskin O, Fusco V 2010 IEEE Trans. Antenna. Propag. 58 459

    [9]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901

    [10]

    Ourir A, Fink M 2014 Phys. Rev. B 89 115403

    [11]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507

    [12]

    Carminati R, Pierrat R, de Rosny J, Fink M 2007 Opt. Lett. 32 3107

    [13]

    Ioannidou M P, Skaropoulos N C, Chrissoulidis D P 1995 J. Opt. Soc. Am. A 12 1782

    [14]

    Borghese F, Denti P, Toscano G, Sindoni O I 1979 Appl. Opt. 18 116

    [15]

    Gouesbet G, Grehan G 1999 J. Opt. A:Pure Appl. Opt. 1 706

    [16]

    Moneda A P, Chrissoulidis D P 2007 J. Opt. Soc. Am. A 24 3437

    [17]

    Purcell E M, Pennypacker C R 1973 Astrophys. J. 186 705

    [18]

    Moneda A P, Chrissoulidis D P 2007 J. Opt. Soc. Am. A 24 3437

    [19]

    Fallahi A, Oswald B 2011 IEEE Trans. Microwave Theory Tech. 59 1433

    [20]

    Harrington R F 2001 Time-harmonic Electromagnetic Fields (New York:John Wiley Sons) p293

    [21]

    Wait J R 1960 Geophysics 25 649

    [22]

    Rabiner L R, Gold B 1975 Theory and Application of Digital Signal Processing (Englewood Cliffs, NJ:Prentice-Hall) p401

  • [1]

    Parvulescu A, Clay C S 1965 Radio Electron. Eng. 29 223

    [2]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555

    [3]

    de Rosny J, Fink M 2007 Phys. Rev. A 76 065801

    [4]

    Fang N, Liu Z, Yen T J, Zhang X 2003 Opt. Express 11 682

    [5]

    Liu Z, Fang N, Yen T J, Zhang X 2003 Appl. Phys. Lett. 83 5184

    [6]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403

    [7]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [8]

    Malyuskin O, Fusco V 2010 IEEE Trans. Antenna. Propag. 58 459

    [9]

    Lemoult F, Lerosey G, de Rosny J, Fink M 2010 Phys. Rev. Lett. 104 203901

    [10]

    Ourir A, Fink M 2014 Phys. Rev. B 89 115403

    [11]

    Jouvaud C, Ourir A, de Rosny J 2014 Appl. Phys. Lett. 104 243507

    [12]

    Carminati R, Pierrat R, de Rosny J, Fink M 2007 Opt. Lett. 32 3107

    [13]

    Ioannidou M P, Skaropoulos N C, Chrissoulidis D P 1995 J. Opt. Soc. Am. A 12 1782

    [14]

    Borghese F, Denti P, Toscano G, Sindoni O I 1979 Appl. Opt. 18 116

    [15]

    Gouesbet G, Grehan G 1999 J. Opt. A:Pure Appl. Opt. 1 706

    [16]

    Moneda A P, Chrissoulidis D P 2007 J. Opt. Soc. Am. A 24 3437

    [17]

    Purcell E M, Pennypacker C R 1973 Astrophys. J. 186 705

    [18]

    Moneda A P, Chrissoulidis D P 2007 J. Opt. Soc. Am. A 24 3437

    [19]

    Fallahi A, Oswald B 2011 IEEE Trans. Microwave Theory Tech. 59 1433

    [20]

    Harrington R F 2001 Time-harmonic Electromagnetic Fields (New York:John Wiley Sons) p293

    [21]

    Wait J R 1960 Geophysics 25 649

    [22]

    Rabiner L R, Gold B 1975 Theory and Application of Digital Signal Processing (Englewood Cliffs, NJ:Prentice-Hall) p401

  • [1] 黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁. 利用波长慢速扫描和快速调制激光吸收光谱实验数据反演光谱吸收函数的理论和实验研究. 物理学报, 2023, 72(12): 123301. doi: 10.7498/aps.72.20230371
    [2] 姚尧, 沈悦, 郝加明, 戴宁. 基于亚波长人工微结构的电磁波减反增透研究进展. 物理学报, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [3] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法. 物理学报, 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [4] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学. 物理学报, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [5] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [6] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [7] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [8] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [9] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [10] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [11] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [12] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [13] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅. 亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 物理学报, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [14] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [15] 陈桂波, 毕娟, 汪剑波, 陈新邑, 孙贯成, 卢俊. 水平层状介质中电磁场并矢Green函数的一种快速新算法. 物理学报, 2011, 60(9): 094102. doi: 10.7498/aps.60.094102
    [16] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [17] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [18] 王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨. 亚波长孔阵列的太赫兹波异常透射研究. 物理学报, 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
    [19] 易永祥, 汪国平, 龙拥兵, 单 红. 二维亚波长金属小孔阵列的透射光增强效应. 物理学报, 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
    [20] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场. 物理学报, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
计量
  • 文章访问数:  5866
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-22
  • 修回日期:  2017-12-27
  • 刊出日期:  2019-04-20

/

返回文章
返回