搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型4d/5d基超导体的结构和物性

宋艳鹏 陈洪祥 郭建刚 陈小龙

引用本文:
Citation:

新型4d/5d基超导体的结构和物性

宋艳鹏, 陈洪祥, 郭建刚, 陈小龙

Crystal structures and physical properties of novel 4d/5d based superconductors

Song Yan-Peng, Chen Hong-Xiang, Guo Jian-Gang, Chen Xiao-Long
PDF
导出引用
  • 在强关联电子体系中,轨道、自旋和晶格等自由度之间的相互作用一直是研究的热点.这些自由度之间的竞争和共存产生了复杂新奇的物理现象,如超导现象、量子相变、自旋有序、拓扑相变、金属绝缘转变等,这些丰富的物理现象来源于不同的有序态或量子涨落之间的竞争和耦合.自旋轨道耦合作用是指粒子的自旋角动量和轨道角动量之间的相互作用,在4d/5d基化合物中,由于电子的运动速度较快,自旋轨道耦合的效应不可忽视,可能表现出与3d基化合物不同的物性.例如,在含4d/5d过渡族金属元素的超导体中,其电子配对的机制可能不同于常规的s波Bardeen-Cooper-Schrieffer超导体.本文以几种典型的4d/5d基超导体为例,对其晶体结构和超导物性及其内在联系进行了详细论述,重点探讨了阴离子共价键强弱对晶体结构、相变和超导物性的影响,希望引起相关研究者对该类超导体的重视.
    The interplay among spin, orbital and lattice in a strongly-correlated electron system attracts a lot of attention in the community of condensed matter physics. The competition and collaboration of these effects result in multiple ground states, such as superconductivity, quantum criticality state, topological phase transition, metallic-insulating transition, etc. As is well known, the spin-orbital coupling is an interaction between the spin angular moment and orbit angular moment. In quantum mechanics, the spin-orbital coupling can be described as an additional interaction in the Hamitonian. For a compound containing heavy elements, the spin-orbital interaction becomes nontrival and can influence the ground states. For instance, in 4d/5d based superconductors, the superconducting pairing mechanism might be significantly different from that of conventional Bardeen-Cooper-Schrieffer superconductor. In this paper, we will summarize the structures and physical properties of several typical 4d/5d transition metal-based superconductors and discuss the intrinsic relationship between them. Importantly, the strength of anionic covalent bonds can determine the phase transition and superconductivity, which will be highlighted here.
      Corresponding author: Guo Jian-Gang, jgguo@iphy.ac.cn;xlchen@iphy.ac.cn ; Chen Xiao-Long, jgguo@iphy.ac.cn;xlchen@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772322).
    [1]

    Kim B J, Yu J, Koh H 2006 Phys. Rev. Lett. 97 106401

    [2]

    Baumberger F, Ingle N J C, Meevasana W 2006 Phys. Rev. Lett. 96 246402

    [3]

    Maeno Y, Hashimoto H, Yoshida K 1994 Nature 372 532

    [4]

    Lee D, Lee H N 2017 Materials 10 368

    [5]

    Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y, Maeno Y 1998 Nature 396 658

    [6]

    Huo J W, Rice T M, Zhang F C 2013 Phys. Rev. Lett. 110 167003

    [7]

    Lee D M 1997 Rev. Mod. Phys. 69 645

    [8]

    Nishiyama M, Inada Y, Zheng G 2007 Phys. Rev. Lett. 98 047002

    [9]

    Okamoto Y, Nohara M, Aruga-Katori H 2007 Phys. Rev. Lett. 99 137207

    [10]

    Cao G, Durairaj V, Chikara S 2007 Phys. Rev. B 76 100402

    [11]

    Cui Q, Cheng J G, Fan W 2016 Phys. Rev. Lett. 117 176603

    [12]

    Wan X, Turner A M 2011 Phys. Rev. B 83 205101

    [13]

    Tomiyasu K, Matsuhira K, Iwasa K 2012 J. Phys. Soc. Jpn. 81 034709

    [14]

    Disseler S M, Dhital C, Hogan T C 2012 Phys. Rev. B 85 174441

    [15]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [16]

    Mitchell J F 2015 APL Mater. 3 062404

    [17]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [18]

    Kim B J, Jin H, Moon S J 2008 Phys. Rev. Lett. 101 076402

    [19]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [20]

    Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Kim B J 2014 Science 125 1151

    [21]

    Kim Y K, Sung N H, Denlinger J D 2016 Nat. Phys. 12 37

    [22]

    Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T, Feng D L 2015 Phys. Rev. X 5 041018

    [23]

    Rossnagel K 2011 J. Phys. Condens. Matter 23 213001

    [24]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [25]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L, Tutis E 2008 Nat. Mater. 7 960

    [26]

    Ang R, Miyata Y, Ieki E 2013 Phys. Rev. B 88 115145

    [27]

    Di Salvo F J, Schwall R, Geballe T H 1971 Phys. Rev. Lett. 27 310

    [28]

    Morris R C, Coleman R V 1973 Phys. Rev. B 7 991

    [29]

    Ang R, Tanaka Y, Ieki E 2012 Phys. Rev. Lett. 109 176403

    [30]

    Yu Y, Yang F, Lu X F 2015 Nat. Nanotechnol. 10 270

    [31]

    Dunnill C W, Edwards H K, Brown P D 2006 Angew. Chem. Int. Ed. Engl. 45 7060

    [32]

    Tsang J C, Shafer M W, Crowder B L 1975 Phys. Rev. B 11 155

    [33]

    Morosan E, Zandbergen H W, Dennis B S 2006 Nat. Phys. 2 544

    [34]

    Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W, Kiryukhin V 2014 Phys. Rev. Lett. 112 086402

    [35]

    Yang J J, Choi Y J, Oh Y S 2012 Phys. Rev. Lett. 108 116402

    [36]

    Fang A F, Xu G, Dong T 2013 Sci. Rep. 3 1153

    [37]

    Oh Y S, Yang J J, Horibe Y 2013 Phys. Rev. Lett. 110 127209

    [38]

    Kamihara Y, Watanabe T, Hirano M 2008 J. Am. Chem. Soc. 130 3296

    [39]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [40]

    Yoshida M, Kudo K, Nohara M, Iwasa Y 2018 Nano Lett. 18 3113

    [41]

    Pyon S, Kudo K, Nohara M 2012 J. Phys. Soc. Jpn. 81 053701

    [42]

    Qi Y, Matsuishi S, Guo J 2012 Phys. Rev. Lett. 109 217002

    [43]

    Guo J, Qi Y, Matsuishi S 2012 J. Am. Chem. Soc. 134 20001

    [44]

    Guo J, Qi Y, Hosono H 2013 Phys. Rev. B 87 224504

    [45]

    Qi Y, Lei H, Guo J 2017 J. Am. Chem. Soc. 139 8106

    [46]

    Schutte W J, De Boer J L 1988 Acta Crystallogr. Sect. B 44 486

    [47]

    Kudo K, Ishii H, Takasuga M 2013 J. Phys. Soc. Jpn. 82 063704

    [48]

    Reithmayer K, Steurer W, Schulz H 1993 Acta Crystallogr. Sect. B 49 6

    [49]

    Kitagawa S, Kotegawa H, Tou H 2013 J. Phys. Soc. Jpn. 82 113704

    [50]

    Luo H L, Klement Jr W 1962 J. Chem. Phys. 36 1870

    [51]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [52]

    Tsuei C C, Newkirk L R 1969 Phys. Rev. 183 619

    [53]

    Guo J G, Chen X, Jia X Y 2017 Nat. Commun. 8 871

  • [1]

    Kim B J, Yu J, Koh H 2006 Phys. Rev. Lett. 97 106401

    [2]

    Baumberger F, Ingle N J C, Meevasana W 2006 Phys. Rev. Lett. 96 246402

    [3]

    Maeno Y, Hashimoto H, Yoshida K 1994 Nature 372 532

    [4]

    Lee D, Lee H N 2017 Materials 10 368

    [5]

    Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y, Maeno Y 1998 Nature 396 658

    [6]

    Huo J W, Rice T M, Zhang F C 2013 Phys. Rev. Lett. 110 167003

    [7]

    Lee D M 1997 Rev. Mod. Phys. 69 645

    [8]

    Nishiyama M, Inada Y, Zheng G 2007 Phys. Rev. Lett. 98 047002

    [9]

    Okamoto Y, Nohara M, Aruga-Katori H 2007 Phys. Rev. Lett. 99 137207

    [10]

    Cao G, Durairaj V, Chikara S 2007 Phys. Rev. B 76 100402

    [11]

    Cui Q, Cheng J G, Fan W 2016 Phys. Rev. Lett. 117 176603

    [12]

    Wan X, Turner A M 2011 Phys. Rev. B 83 205101

    [13]

    Tomiyasu K, Matsuhira K, Iwasa K 2012 J. Phys. Soc. Jpn. 81 034709

    [14]

    Disseler S M, Dhital C, Hogan T C 2012 Phys. Rev. B 85 174441

    [15]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [16]

    Mitchell J F 2015 APL Mater. 3 062404

    [17]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [18]

    Kim B J, Jin H, Moon S J 2008 Phys. Rev. Lett. 101 076402

    [19]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [20]

    Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Kim B J 2014 Science 125 1151

    [21]

    Kim Y K, Sung N H, Denlinger J D 2016 Nat. Phys. 12 37

    [22]

    Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T, Feng D L 2015 Phys. Rev. X 5 041018

    [23]

    Rossnagel K 2011 J. Phys. Condens. Matter 23 213001

    [24]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [25]

    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L, Tutis E 2008 Nat. Mater. 7 960

    [26]

    Ang R, Miyata Y, Ieki E 2013 Phys. Rev. B 88 115145

    [27]

    Di Salvo F J, Schwall R, Geballe T H 1971 Phys. Rev. Lett. 27 310

    [28]

    Morris R C, Coleman R V 1973 Phys. Rev. B 7 991

    [29]

    Ang R, Tanaka Y, Ieki E 2012 Phys. Rev. Lett. 109 176403

    [30]

    Yu Y, Yang F, Lu X F 2015 Nat. Nanotechnol. 10 270

    [31]

    Dunnill C W, Edwards H K, Brown P D 2006 Angew. Chem. Int. Ed. Engl. 45 7060

    [32]

    Tsang J C, Shafer M W, Crowder B L 1975 Phys. Rev. B 11 155

    [33]

    Morosan E, Zandbergen H W, Dennis B S 2006 Nat. Phys. 2 544

    [34]

    Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W, Kiryukhin V 2014 Phys. Rev. Lett. 112 086402

    [35]

    Yang J J, Choi Y J, Oh Y S 2012 Phys. Rev. Lett. 108 116402

    [36]

    Fang A F, Xu G, Dong T 2013 Sci. Rep. 3 1153

    [37]

    Oh Y S, Yang J J, Horibe Y 2013 Phys. Rev. Lett. 110 127209

    [38]

    Kamihara Y, Watanabe T, Hirano M 2008 J. Am. Chem. Soc. 130 3296

    [39]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [40]

    Yoshida M, Kudo K, Nohara M, Iwasa Y 2018 Nano Lett. 18 3113

    [41]

    Pyon S, Kudo K, Nohara M 2012 J. Phys. Soc. Jpn. 81 053701

    [42]

    Qi Y, Matsuishi S, Guo J 2012 Phys. Rev. Lett. 109 217002

    [43]

    Guo J, Qi Y, Matsuishi S 2012 J. Am. Chem. Soc. 134 20001

    [44]

    Guo J, Qi Y, Hosono H 2013 Phys. Rev. B 87 224504

    [45]

    Qi Y, Lei H, Guo J 2017 J. Am. Chem. Soc. 139 8106

    [46]

    Schutte W J, De Boer J L 1988 Acta Crystallogr. Sect. B 44 486

    [47]

    Kudo K, Ishii H, Takasuga M 2013 J. Phys. Soc. Jpn. 82 063704

    [48]

    Reithmayer K, Steurer W, Schulz H 1993 Acta Crystallogr. Sect. B 49 6

    [49]

    Kitagawa S, Kotegawa H, Tou H 2013 J. Phys. Soc. Jpn. 82 113704

    [50]

    Luo H L, Klement Jr W 1962 J. Chem. Phys. 36 1870

    [51]

    Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. 31 1136

    [52]

    Tsuei C C, Newkirk L R 1969 Phys. Rev. 183 619

    [53]

    Guo J G, Chen X, Jia X Y 2017 Nat. Commun. 8 871

  • [1] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究. 物理学报, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [4] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变. 物理学报, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [7] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [8] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应. 物理学报, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [9] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [10] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [12] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [13] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [14] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展. 物理学报, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [15] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [16] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [17] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [18] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [19] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [20] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成. 物理学报, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
计量
  • 文章访问数:  8180
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 修回日期:  2018-05-06
  • 刊出日期:  2019-06-20

/

返回文章
返回