-
物理量的测量与单位标准的统一推动了计量学的发展.量子力学的建立,激光技术的发明以及原子与分子物理学的发展,在原理与技术上进一步刷新了计量学的研究内涵,特别是激光干涉与原子频标技术的发展,引起了计量学革命性的飞跃.基于激光干涉的引力波测量、激光陀螺仪,基于原子干涉的原子钟、原子陀螺仪等精密测量技术相继诞生,一个以量子物理为基础,探索与开拓物理量精密测量方法与技术的新的科学分支——量子计量学(Quantum Metrology)已然兴起.干涉是计量学中最常用的相位测量方法.量子干涉技术,其相位测量精度能够突破标准量子极限的限制,是量子计量学与量子测量技术的核心研究内容.本文重点介绍近几年我们在量子干涉方面所取得的新开拓与新发展,主要内容包括基于原子系综中四波混频过程的SU (1,1)型光量子关联干涉仪和基于原子系综中拉曼散射过程的光-原子混合干涉仪.The measurement of physical quantities and measurement units standard promote the development of metrology. Especially, the developments of laser interference and atomic frequency standard bring a revolutionary leap for metrology. Many precision measurement techniques have been proposed and experimentally demonstrated, such as gravitational wave measurements and laser gyroscopes based on laser interferometry, and atomic clocks and atomic gyroscopes based on the atom interferometry. Recently, a new branch of science, quantum metrology, has grown up to further explore and exploit the quantum techniques for precision measurement of physical quantities.#br#This paper will focus on recent developments in quantum metrology and interference based on coherence and correlation of light and atom. Firstly, we briefly review the development of metrology. Then, we introduce our own researches in recent years, including quantum-correlation SU(1,1) optical interferometer based on four wave mixing process in atomic vapor and the atom-light hybrid interferometer based on Raman scattering in atomic vapor.#br#Interferometer is a powerful tool to measure physical quantities sensitive to the inference wave with high precision, and has been widely used in scientific research, industry test, navigation and guidance system. For example, the laser interferometer is able to measure optical phase sensitive quantities, including length, angular velocity, gravitational wave and so on. Meanwhile, the atom interferometer is sensitive to the change of atomic phase caused by the light, gravity, electric and magnetic fields. As a new type of interferometry, the atom-light hybrid interferometer, is sensitive to both the optical phase and atomic phase. Furthermore, SU(1,1) interferometer and nonlinear atom-light hybrid interferometer have the ability to beat the standard quantum limit of phase sensitivity. Quantum interference technology, whose phase measurement accuracy can break through the limit of standard quantum limit, is the core of quantum metrology and quantum measurement technology.
-
Keywords:
- atom-light correlation /
- optical quantum correlation interferometer /
- atom-light hybrid interferometer /
- phase sensitivity
[1] Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91
[2] Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74
[3] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25
[4] Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140
[5] Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989
[6] Hariharan P 1990 Rep. Prog. Phys. 54 339
[7] The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102
[8] The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101
[9] Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490
[10] Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41
[11] Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369
[12] Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[13] Caves C M 1981 Phys. Rev. D 23 1693
[14] Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278
[15] Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153
[16] The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613
[17] Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776
[18] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733
[19] Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726
[20] Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033
[21] Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049
[22] Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165
[23] Ou Z Y 2012 Phys. Rev. A 85 023815
[24] Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649
[25] Gerry C C 2000 Phys. Rev. A 61 043811
[26] Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840
[27] Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473
[28] Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775
[29] Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602
[30] Raman C V 1928 Indian J. Phys. 2 387
[31] Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387
[32] Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603
[33] Michelson A A, Morley E W 1887 Am. J. Sci. 34 333
[34] Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[35] Yuen H P, Chan W S 1983 Opt. Lett. 8 177
[36] Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345
[37] Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002
[38] Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689
[39] Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693
[40] Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177
[41] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[42] Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223
[43] Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051
[44] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413
[45] Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847
[46] Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766
-
[1] Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91
[2] Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74
[3] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25
[4] Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140
[5] Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989
[6] Hariharan P 1990 Rep. Prog. Phys. 54 339
[7] The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102
[8] The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101
[9] Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490
[10] Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41
[11] Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369
[12] Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[13] Caves C M 1981 Phys. Rev. D 23 1693
[14] Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278
[15] Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153
[16] The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613
[17] Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776
[18] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733
[19] Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726
[20] Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033
[21] Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049
[22] Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165
[23] Ou Z Y 2012 Phys. Rev. A 85 023815
[24] Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649
[25] Gerry C C 2000 Phys. Rev. A 61 043811
[26] Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840
[27] Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473
[28] Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775
[29] Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602
[30] Raman C V 1928 Indian J. Phys. 2 387
[31] Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387
[32] Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603
[33] Michelson A A, Morley E W 1887 Am. J. Sci. 34 333
[34] Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[35] Yuen H P, Chan W S 1983 Opt. Lett. 8 177
[36] Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345
[37] Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002
[38] Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689
[39] Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693
[40] Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177
[41] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[42] Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223
[43] Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051
[44] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413
[45] Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847
[46] Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766
计量
- 文章访问数: 7712
- PDF下载量: 386
- 被引次数: 0