搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光和原子关联与量子计量

冯啸天 袁春华 陈丽清 陈洁菲 张可烨 张卫平

引用本文:
Citation:

光和原子关联与量子计量

冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平

Quantum metrology with atom and light correlation

Feng Xiao-Tian, Yuan Chun-Hua, Chen Li-Qing, Chen Jie-Fei, Zhang Ke-Ye, Zhang Wei-Ping
PDF
导出引用
  • 物理量的测量与单位标准的统一推动了计量学的发展.量子力学的建立,激光技术的发明以及原子与分子物理学的发展,在原理与技术上进一步刷新了计量学的研究内涵,特别是激光干涉与原子频标技术的发展,引起了计量学革命性的飞跃.基于激光干涉的引力波测量、激光陀螺仪,基于原子干涉的原子钟、原子陀螺仪等精密测量技术相继诞生,一个以量子物理为基础,探索与开拓物理量精密测量方法与技术的新的科学分支——量子计量学(Quantum Metrology)已然兴起.干涉是计量学中最常用的相位测量方法.量子干涉技术,其相位测量精度能够突破标准量子极限的限制,是量子计量学与量子测量技术的核心研究内容.本文重点介绍近几年我们在量子干涉方面所取得的新开拓与新发展,主要内容包括基于原子系综中四波混频过程的SU (1,1)型光量子关联干涉仪和基于原子系综中拉曼散射过程的光-原子混合干涉仪.
    The measurement of physical quantities and measurement units standard promote the development of metrology. Especially, the developments of laser interference and atomic frequency standard bring a revolutionary leap for metrology. Many precision measurement techniques have been proposed and experimentally demonstrated, such as gravitational wave measurements and laser gyroscopes based on laser interferometry, and atomic clocks and atomic gyroscopes based on the atom interferometry. Recently, a new branch of science, quantum metrology, has grown up to further explore and exploit the quantum techniques for precision measurement of physical quantities.#br#This paper will focus on recent developments in quantum metrology and interference based on coherence and correlation of light and atom. Firstly, we briefly review the development of metrology. Then, we introduce our own researches in recent years, including quantum-correlation SU(1,1) optical interferometer based on four wave mixing process in atomic vapor and the atom-light hybrid interferometer based on Raman scattering in atomic vapor.#br#Interferometer is a powerful tool to measure physical quantities sensitive to the inference wave with high precision, and has been widely used in scientific research, industry test, navigation and guidance system. For example, the laser interferometer is able to measure optical phase sensitive quantities, including length, angular velocity, gravitational wave and so on. Meanwhile, the atom interferometer is sensitive to the change of atomic phase caused by the light, gravity, electric and magnetic fields. As a new type of interferometry, the atom-light hybrid interferometer, is sensitive to both the optical phase and atomic phase. Furthermore, SU(1,1) interferometer and nonlinear atom-light hybrid interferometer have the ability to beat the standard quantum limit of phase sensitivity. Quantum interference technology, whose phase measurement accuracy can break through the limit of standard quantum limit, is the core of quantum metrology and quantum measurement technology.
      通信作者: 袁春华, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn ; 陈丽清, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:91536114,11474095,11654005,11604069,11574086)、国家重点研发计划(批准号:2016YFA0302001);和上海自然科学基金(批准号:17ZR1442800)资助的课题.
      Corresponding author: Yuan Chun-Hua, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn ; Chen Li-Qing, chyuan@phy.ecnu.edu.cn;lqchen@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536114, 11474095, 11654005, 11604069, 11574086)), National Key Research and Development Program of China (Grant No. 2016YFA0302001), and the National Science Foundation of Shanghai, China (Grant 17ZR1442800).
    [1]

    Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91

    [2]

    Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [4]

    Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140

    [5]

    Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989

    [6]

    Hariharan P 1990 Rep. Prog. Phys. 54 339

    [7]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [8]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101

    [9]

    Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490

    [10]

    Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41

    [11]

    Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369

    [12]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [13]

    Caves C M 1981 Phys. Rev. D 23 1693

    [14]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [15]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [16]

    The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613

    [17]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776

    [18]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733

    [19]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [20]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [21]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049

    [22]

    Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165

    [23]

    Ou Z Y 2012 Phys. Rev. A 85 023815

    [24]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649

    [25]

    Gerry C C 2000 Phys. Rev. A 61 043811

    [26]

    Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840

    [27]

    Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473

    [28]

    Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775

    [29]

    Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602

    [30]

    Raman C V 1928 Indian J. Phys. 2 387

    [31]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [32]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [33]

    Michelson A A, Morley E W 1887 Am. J. Sci. 34 333

    [34]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [35]

    Yuen H P, Chan W S 1983 Opt. Lett. 8 177

    [36]

    Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345

    [37]

    Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002

    [38]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [39]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693

    [40]

    Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177

    [41]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [42]

    Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223

    [43]

    Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051

    [44]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [45]

    Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847

    [46]

    Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766

  • [1]

    Simon D S, Jaeger G, Sergienko A V 2017 Quantum Metrology, Imaging, and Communication (Cham: Springer) p91

    [2]

    Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74

    [3]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [4]

    Ramos B L, Nagy G, Choquette S J 2000 Electroanalysis 12 140

    [5]

    Mkrauss L, Dodelson S, Meyer S 2010 Science 328 989

    [6]

    Hariharan P 1990 Rep. Prog. Phys. 54 339

    [7]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2016 Phys. Rev. Lett. 116 061102

    [8]

    The LIGO Scientific Collaboration, The Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101

    [9]

    Marton L, Simpson J A, Suddeth J A 1953 Phys. Rev. 90 490

    [10]

    Möllenstedt G, Dker H 1955 Naturwissenschaften 42 41

    [11]

    Rauch H, Treimer W, Bonse U 1974 Phys. Lett. 47 A369

    [12]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [13]

    Caves C M 1981 Phys. Rev. D 23 1693

    [14]

    Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278

    [15]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [16]

    The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613

    [17]

    Ma Y Q, Miao H X, Pang B H, Evans M, Zhao C, Harms J, Schnabel R, Chen Y B 2017 Nat. Phys. 13 776

    [18]

    Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P, Dowling J P 2000 Phys. Rev. Lett. 85 2733

    [19]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [20]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [21]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049

    [22]

    Gross C, Zibold T, Nicklas E, Estéve J, Oberthaler M K 2010 Nature 464 1165

    [23]

    Ou Z Y 2012 Phys. Rev. A 85 023815

    [24]

    Bollinger J J, Itano W M, Wineland D J, Heinzen D J 1996 Phys. Rev. A 54 4649

    [25]

    Gerry C C 2000 Phys. Rev. A 61 043811

    [26]

    Li D, Gard B T, Gao Y, Yuan C H, Zhang W P, Lee H, Dowling J P 2016 Phys. Rev. A 94 063840

    [27]

    Levenson M D, Shelby R M, Reid M, Walls D F 1986 Phys. Rev. Lett. 57 2473

    [28]

    Qiu C, Chen S Y, Guo J X, Chen L Q, Chen B, Ou Z Y, Zhang W P 2016 Optica 3 775

    [29]

    Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q 2015 Phys. Rev. Lett. 115 043602

    [30]

    Raman C V 1928 Indian J. Phys. 2 387

    [31]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [32]

    Chen L Q, Zhang G W, Bian C L, Yuan C H, Ou Z Y, Zhang W P 2010 Phys. Rev. Lett. 105 133603

    [33]

    Michelson A A, Morley E W 1887 Am. J. Sci. 34 333

    [34]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [35]

    Yuen H P, Chan W S 1983 Opt. Lett. 8 177

    [36]

    Rafal D D, Jarzyna M, Kolodynśki J 2015 Prog. Opt. 60 345

    [37]

    Kimble H J, Levin Y, Matsko A B, Thorne K S, Vyatchanin S P 2001 Phys. Rev. D 65 022002

    [38]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [39]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E 1991 Phys. Rev. Lett. 66 2693

    [40]

    Riehle F, Kisters T, Witte A, Helmcke J, Borde C J 1991 Phys. Rev. Lett. 67 177

    [41]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [42]

    Peters A, Chung K Y, Young B, Hensley J, Chu S 1997 Phil. Trans. R. Soc. Lond. A 355 2223

    [43]

    Du W, Jia J, Chen J F, Ou Z Y, Zhang W P 2018 Opt. Lett. 43 1051

    [44]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [45]

    Ma H M, Li D, Yuan C H, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. A 92 023847

    [46]

    Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y, Zhang W P 2016 Opt. Express 24 17766

  • [1] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241348
    [2] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [4] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [5] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [6] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [8] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪. 物理学报, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [9] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法. 物理学报, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [10] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [11] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究. 物理学报, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [12] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [13] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [14] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [15] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [16] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究. 物理学报, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [17] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨. 物理学报, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
    [20] 胡建芳, 韦钦, 张志三. 锗红外干涉仪. 物理学报, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
计量
  • 文章访问数:  7712
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-05
  • 修回日期:  2018-07-15
  • 刊出日期:  2019-08-20

/

返回文章
返回