搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于内潮动力特征的浅海声速剖面构建新方法

屈科 朴胜春 朱凤芹

引用本文:
Citation:

一种基于内潮动力特征的浅海声速剖面构建新方法

屈科, 朴胜春, 朱凤芹

A noval method of constructing shallow water sound speed profile based on dynamic characteristic of internal tides

Qu Ke, Piao Sheng-Chun, Zhu Feng-Qin
PDF
HTML
导出引用
  • 为了降低反演参数空间的维数, 常利用正交经验函数(EOF)来构建声速剖面. 然而, EOF方法的样本依赖性使之难以用于缺乏现场实测数据的海域. 本文提出一种全新的利用历史数据而不依靠现场实时数据即可获得的声速剖面展开基函数. 基于水质子流体静力方程和物态方程, 推导了在缺乏实时测量的情况下从历史数据获得水动力模式基函数(HMB)的办法. 利用WOA13季节平均温盐数据获得代表内潮动力特征的HMB进行分析. 较之EOF, HMB及其对应的投影系数与海洋动力特征直接相关并具有明确的物理含义. 基于东中国海实验获得的CTD (conductance-temperature-depth)及宽带爆炸声源声信号数据, 利用声速剖面重构以及匹配场声层析对HMB进行了分析, 并与EOF进行对比研究. 结果表明: HMB可以以较好的精度构建浅海声速剖面. 在对现场实时测量依赖更小的情况下, 基于HMB方法的声场预报及声层析结果与EOF方法一样好. HMB的获取更简单且直接关联海水的物理特性, 该方法可在实时测量样本不足的海域有效替代EOF进行海洋动力现象的声学监测.
    In order to provide constraint to the number of inversion parameters, sound speed profile is often modeled by empirical orthogonal functions (EOFs). However, the EOF method, which is dependent on the sample data, is often difficult to apply due to insufficient real-time in-situ measurements. In this paper, we present a novel basis for reconstructing the sound speed profile, which can be obtained by using historical data without real-time sample. By deducing the dynamic equations and the state function of water particle, the hydrodynamic mode bases (HMBs) can be calculated from historical data without real-time in-situ measurement, and a method of constructing the sound speed profile is established by using the dynamic characteristics of seawater. The use of the World Ocean Atlas 2013 (WOA13) can obtain the seasonal profiles of temperature and salinity, and then the HMB which represents the dynamic characteristic of internal tides is obtained and analyzed. Unlike EOF, the HMB and its projection coefficients are directly related to the sea dynamic features and have a more explicit physical meaning. According to the orthogonality analysis of hydrodynamic mode, the first-order coefficient can be used to describe the depth change of sound speed iso-lines and the second-order coefficient can be used to describe the change of sound speed gradient. Based on the conductance-temperature-depth profiles and broadband data from underwater explosion collected in the East China Sea experiment of the Asian Seas International Acoustic Experiment, the HMB is tested and compared with the EOF in the sound speed profile reconstruction and matched field tomography. The results show that the sound speed profile in shallow water area can be expressed by the HMB with proper precision. By means of the conventional matched field tomography, the valid sound speed profile can also be obtained in the form of HMB coefficients. The result of transmission loss prediction and tomography from HMB are as good as those from EOF, while the HMB has less dependent on real-time in-situ measurement. The HMB is easy to obtain and closely related to the physical characteristics of seawater, it can be used as an efficient alternative to EOF for monitoring the marine dynamic phenomena in sea areas with insufficient real-time in-situ measurement.
      通信作者: 朴胜春, piaoshengchun@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41406041)、广东省自然科学基金(批准号: 2014A030310256)和广东海洋大学优秀青年教师资助(批准号: HDYQ2015010)资助的课题.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41406041), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310256), and the Excellent Young Teachers Program of GDOU, China (Grant No. HDYQ2015010).
    [1]

    Yang T C, Huang C F, Huang S H, Liu J Y 2017 IEEE J. Ocean. Eng. 42 663Google Scholar

    [2]

    Turgut A, Mignerey P C, Goldstein D J, Schindall J A 2013 J. Acoust. Soc. Am. 133 1981Google Scholar

    [3]

    刘进忠, 高大治, 王宁 2009 中国科学 G辑 39 719

    Liu J Z, Gao D Z, Wang N 2009 Sci. China G 39 719

    [4]

    Bianco M, Gerstoft P 2017 J. Acoust. Soc. Am. 141 1749Google Scholar

    [5]

    Huang C F, Gerstoft P, Hodgkiss W S 2008 J. Acoust. Soc. Am. 123 162Google Scholar

    [6]

    Taroundakis M I, Papadakis J S 1993 J. Computat. Acoust. 1 395Google Scholar

    [7]

    Li Z L, He L, Zhang R H, Li F H, Yu Y X, Lin P 2015 Sci. China: Phys. Mech. Astron. 58 1

    [8]

    张维, 杨士莪, 黄益旺, 唐俊峰, 宋扬 2012 振动与冲击 31 6Google Scholar

    Zhang W, Yang S E, Huang Y W, Tang J F, Song Y 2012 J. Vib. Shock 31 6Google Scholar

    [9]

    Li F H, Zhang R H 2010 Chin. Phys. Lett. 27 084303

    [10]

    何利, 李整林, 彭朝晖, 吴立新, 刘建军 2011 中国科学: 物理学 力学 天文学 41 49

    He L, Li Z L, Peng Z H, Wu L X, Liu J J 2011 Sci. China: Phys. Mech. Astron. 41 49

    [11]

    李佳, 杨坤德, 雷波, 何正耀 2012 物理学报 61 084301Google Scholar

    Li J, Yang K D, Lei B, He Z Y 2012 Acta Phys. Sin. 61 084301Google Scholar

    [12]

    张旭, 张永刚, 张健雪, 聂邦胜, 姚忠山 2010 海洋科学进展 28 498Google Scholar

    Zhang X, Zhang Y G, Zhang J X, Nie B S, Yao Z S 2010 Adv. Marine Sci. 28 498Google Scholar

    [13]

    Jensen J K, Hjelmervik K T, Østenstad P 2012 IEEE J. Ocean. Eng. 37 103Google Scholar

    [14]

    Hjelmervik K, Hjelmervik K T 2014 Ocean Dyn. 64 655Google Scholar

    [15]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [16]

    苏林, 马力, 宋文华, 郭圣明, 鹿力成 2015 物理学报 64 024302Google Scholar

    Su L, Ma L, Song W H, Guo S M, Lu L C 2015 Acta Phys. Sin. 64 024302Google Scholar

    [17]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410Google Scholar

    [18]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [19]

    Teague W J, Carron M J, Hogan P J 1990 J. Geophys. Res. Oceans 95 7167Google Scholar

    [20]

    张旭, 张永刚, 张健雪, 董楠 2011 海洋学报 33 54

    Zhang X, Zhang Y G, Zhang J X, Dong N 2011 Acta Oceanol. Sin. 33 54

    [21]

    oyer T P, Antonov J I, Baranova O K, Coleman C, Garcia H E, Grodsky A, Johnson D R, Locarnini R A, Mishonov A V, O'Brien T D, Paver C R, Reagan J R, Seidov D, Smolyar I V, Zweng M M https://repository.library.noaa.gov/view/noaa/ 1291 [2018-4-19]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p64

    [23]

    蔡树群 2015 内孤立波数值模式及其在南海区域的应用 (北京: 海洋出版社) 第10页

    Cai S Q 2015 Internal Solitons Numerical Model and Its Application in the South China Sea (Beijing: Ocean Press) p10 (in Chinese)

    [24]

    郭圣明, 胡涛 2010 哈尔滨工程大学学报 31 967Google Scholar

    Guo S M, Hu T 2010 J. Harbin Engin. Univ. 31 967Google Scholar

    [25]

    崔茂常, 乔方利, 莫军, 郭炳火 2002 海洋学报 24 127Google Scholar

    Cui M C, Qiao F L, Mo J, Guo B H 2002 Acta Oceanol. Sin. 24 127Google Scholar

    [26]

    宋文华, 胡涛, 郭圣明, 马力, 鹿力成 2014 声学学报 39 11Google Scholar

    Song W H, Hu T, Guo S M, Ma L, Lu L C 2014 Acta Acust. 39 11Google Scholar

    [27]

    Dahl P H, Zhang R, Miller J H, Bartek L R, Peng Z, Ramp S R, Zhou J X, Chiu C S, Lynch J F, Simmen J A 2004 IEEE J. Ocean. Eng. 29 920Google Scholar

    [28]

    何利, 李整林, 张仁和, 李风华 2006 自然科学进展 16 351Google Scholar

    He L, Li Z L, Zhang R H, Li F H 2006 Prog. Natural Sci. 16 351Google Scholar

    [29]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

  • 图 1  CTD测得的声速剖面(细线)和平均声速(粗线)

    Fig. 1.  Sound speed profiles (thin line) and average sound speed profile (rough line) measured by CTD.

    图 2  温度、盐度以及浮力频率剖面

    Fig. 2.  Temperature, salinity and buoyancy frequency profile.

    图 3  不同方法获得的声速剖面展开基比较(黑线, HMB方法; 红线, EOF方法)

    Fig. 3.  Comparison of the sound speed profile bases obtained by different methods (black line, HMB; red line, EOF).

    图 4  不同样本重构效果的误差分析

    Fig. 4.  Error analysis of different samples.

    图 5  第8号声速剖面重构

    Fig. 5.  The 8th sound speed profile reconstruction.

    图 6  声速剖面计算传播分析(单位: dB) (a) CTD测量; (b) HMB重构; (c) EOF重构

    Fig. 6.  Analysis of transmission loss calculated by sound speed profiles (dB): (a) CTD measurement; (b) HMB reconstruction; (c) EOF reconstruction.

    图 7  前两阶模态振幅

    Fig. 7.  Amplitude of the first two modes.

    图 8  1525 m/s等声速线深度和第一阶投影系数随样本的变化

    Fig. 8.  Variations of the depth at a sound speed of 1525 m/s and the first-order projection coefficient with samples.

    图 9  声速梯度和第二阶投影系数随样本的变化

    Fig. 9.  Variations of the sound speed gradient and the second-order projection coefficient with samples.

    图 10  反演流程

    Fig. 10.  Inversion process.

    图 11  不同距离的反演结果 (a) 10.2 km; (b) 10.2 km; (c) 12 km

    Fig. 11.  Inversion results at different ranges: (a) 10.2 km; (b) 10.2 km; (c)12 km.

    图 12  3个反演参数的边缘概率密度分布 (红线为代价函数最优值对应参数)

    Fig. 12.  Probability distribution for the three inversion parameters (the red line is the optimum value for the objective function).

    图 13  传播损失预报与观测值

    Fig. 13.  Transmission loss predicted and measured.

    表 1  不同方法重构效果的误差分析(单位: m/s)

    Table 1.  Error analysis of different reconstruction methods (m/s).

    阶数
    12345678
    HMB方法
    均方根误差
    1.00.690.600.540.490.420.370.34
    EOF方法
    均方根误差
    0.760.590.470.420.340.290.250.22
    下载: 导出CSV

    表 2  不同方法各阶所占声速剖面变化比重

    Table 2.  Proportion of sound speed variety for each order in different methods.

    阶数
    12345678
    HMB方法
    所占变化比
    55.618.19.34.73.73.12.11.8
    EOF方法
    所占变化比
    71.415.15.74.21.50.90.50.2
    下载: 导出CSV
  • [1]

    Yang T C, Huang C F, Huang S H, Liu J Y 2017 IEEE J. Ocean. Eng. 42 663Google Scholar

    [2]

    Turgut A, Mignerey P C, Goldstein D J, Schindall J A 2013 J. Acoust. Soc. Am. 133 1981Google Scholar

    [3]

    刘进忠, 高大治, 王宁 2009 中国科学 G辑 39 719

    Liu J Z, Gao D Z, Wang N 2009 Sci. China G 39 719

    [4]

    Bianco M, Gerstoft P 2017 J. Acoust. Soc. Am. 141 1749Google Scholar

    [5]

    Huang C F, Gerstoft P, Hodgkiss W S 2008 J. Acoust. Soc. Am. 123 162Google Scholar

    [6]

    Taroundakis M I, Papadakis J S 1993 J. Computat. Acoust. 1 395Google Scholar

    [7]

    Li Z L, He L, Zhang R H, Li F H, Yu Y X, Lin P 2015 Sci. China: Phys. Mech. Astron. 58 1

    [8]

    张维, 杨士莪, 黄益旺, 唐俊峰, 宋扬 2012 振动与冲击 31 6Google Scholar

    Zhang W, Yang S E, Huang Y W, Tang J F, Song Y 2012 J. Vib. Shock 31 6Google Scholar

    [9]

    Li F H, Zhang R H 2010 Chin. Phys. Lett. 27 084303

    [10]

    何利, 李整林, 彭朝晖, 吴立新, 刘建军 2011 中国科学: 物理学 力学 天文学 41 49

    He L, Li Z L, Peng Z H, Wu L X, Liu J J 2011 Sci. China: Phys. Mech. Astron. 41 49

    [11]

    李佳, 杨坤德, 雷波, 何正耀 2012 物理学报 61 084301Google Scholar

    Li J, Yang K D, Lei B, He Z Y 2012 Acta Phys. Sin. 61 084301Google Scholar

    [12]

    张旭, 张永刚, 张健雪, 聂邦胜, 姚忠山 2010 海洋科学进展 28 498Google Scholar

    Zhang X, Zhang Y G, Zhang J X, Nie B S, Yao Z S 2010 Adv. Marine Sci. 28 498Google Scholar

    [13]

    Jensen J K, Hjelmervik K T, Østenstad P 2012 IEEE J. Ocean. Eng. 37 103Google Scholar

    [14]

    Hjelmervik K, Hjelmervik K T 2014 Ocean Dyn. 64 655Google Scholar

    [15]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [16]

    苏林, 马力, 宋文华, 郭圣明, 鹿力成 2015 物理学报 64 024302Google Scholar

    Su L, Ma L, Song W H, Guo S M, Lu L C 2015 Acta Phys. Sin. 64 024302Google Scholar

    [17]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410Google Scholar

    [18]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [19]

    Teague W J, Carron M J, Hogan P J 1990 J. Geophys. Res. Oceans 95 7167Google Scholar

    [20]

    张旭, 张永刚, 张健雪, 董楠 2011 海洋学报 33 54

    Zhang X, Zhang Y G, Zhang J X, Dong N 2011 Acta Oceanol. Sin. 33 54

    [21]

    oyer T P, Antonov J I, Baranova O K, Coleman C, Garcia H E, Grodsky A, Johnson D R, Locarnini R A, Mishonov A V, O'Brien T D, Paver C R, Reagan J R, Seidov D, Smolyar I V, Zweng M M https://repository.library.noaa.gov/view/noaa/ 1291 [2018-4-19]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p64

    [23]

    蔡树群 2015 内孤立波数值模式及其在南海区域的应用 (北京: 海洋出版社) 第10页

    Cai S Q 2015 Internal Solitons Numerical Model and Its Application in the South China Sea (Beijing: Ocean Press) p10 (in Chinese)

    [24]

    郭圣明, 胡涛 2010 哈尔滨工程大学学报 31 967Google Scholar

    Guo S M, Hu T 2010 J. Harbin Engin. Univ. 31 967Google Scholar

    [25]

    崔茂常, 乔方利, 莫军, 郭炳火 2002 海洋学报 24 127Google Scholar

    Cui M C, Qiao F L, Mo J, Guo B H 2002 Acta Oceanol. Sin. 24 127Google Scholar

    [26]

    宋文华, 胡涛, 郭圣明, 马力, 鹿力成 2014 声学学报 39 11Google Scholar

    Song W H, Hu T, Guo S M, Ma L, Lu L C 2014 Acta Acust. 39 11Google Scholar

    [27]

    Dahl P H, Zhang R, Miller J H, Bartek L R, Peng Z, Ramp S R, Zhou J X, Chiu C S, Lynch J F, Simmen J A 2004 IEEE J. Ocean. Eng. 29 920Google Scholar

    [28]

    何利, 李整林, 张仁和, 李风华 2006 自然科学进展 16 351Google Scholar

    He L, Li Z L, Zhang R H, Li F H 2006 Prog. Natural Sci. 16 351Google Scholar

    [29]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

  • [1] 孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤. EAST上中性束注入和离子回旋共振加热下快离子分布函数层析反演. 物理学报, 2023, 72(21): 215203. doi: 10.7498/aps.72.20230846
    [2] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响. 物理学报, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [3] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构. 物理学报, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [4] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [5] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演. 物理学报, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [6] 陈洁, 张淳民, 王鼎益, 张兴赢, 王舒鹏, 栗彦芬, 刘冬冬, 荣飘. 地表反照率对短波红外探测大气CO2的影响. 物理学报, 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [7] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演. 物理学报, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [8] 青海银, 张援农, 周晨, 赵正予, 陈罡. 基于MST雷达垂直风速的大气温度剖面反演. 物理学报, 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [9] 李伦, 吴雄斌. 高频地波雷达多站浅海水深与海流反演. 物理学报, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [10] 李伦, 吴雄斌, 徐兴安. 基于优化理论的高频地波雷达海浪参数反演. 物理学报, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [11] 韩月琪, 钟中, 王云峰, 杜华栋. 梯度计算的集合变分方案及其在大气Ekman层湍流系数反演中的应用. 物理学报, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [12] 李海燕, 胡云安, 任建存, 朱敏, 刘亮. 非匹配不确定交叉严反馈超混沌系统神经网络反演同步. 物理学报, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [13] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [14] 李佳, 杨坤德, 雷波, 何正耀. 印度洋中北部声速剖面结构的时空变化及其物理机理研究. 物理学报, 2012, 61(8): 084301. doi: 10.7498/aps.61.084301
    [15] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究. 物理学报, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [16] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [17] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径. 物理学报, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [18] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [19] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [20] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
计量
  • 文章访问数:  9291
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2019-02-28
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回