搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z烧蚀等离子体的运动规律研究

刘仲恒 孟广为 赵英奎

引用本文:
Citation:

Z烧蚀等离子体的运动规律研究

刘仲恒, 孟广为, 赵英奎

Movement of ablated high-Z plasmas

Liu Zhong-Heng, Meng Guang-Wei, Zhao Ying-Kui
PDF
HTML
导出引用
  • 填充低密度低Z物质的黑腔孔隙漏光是一类典型的高Z烧蚀等离子体在烧蚀及压力动态平衡下的运动问题. 本文利用简化的一维平面模型模拟了孔隙侧壁烧蚀金等离子体在CH泡沫约束作用下的运动行为, 展示了轻重物质界面在物质压和辐射压共同作用下运动的物理图象. 提出金等离子体从扩张到折返的过程对应于孔隙从收缩到打开的过程, 并给出折返时间和折返距离的解析方程, 以及二者的峰值温度三次方与CH密度成正比的规律, 同时表明在CH密度的较大变化范围内, 金等离子体的烧蚀标度指数不变. 利用改造的一维MULTI程序数值模拟的结果验证了解析理论的主要结论. 本文给出了可在较宽的温度密度范围内计算高Z等离子体做折返运动的理论公式.
    The energy leaking through a slot in the hohlraum filled with low-Z foams is a typical dynamic problem of the ablated high-Z plasmas. In this paper, we develop a simplified one-dimensional model to study the expansion-reverse process of the ablated Au plasmas, which corresponds to the closing-reopening process of a slot. Our work shows that its physical mechanism is the ablation pressure competing with radiation pressure difference and the material pressure of low-Z foams. The analytical formulas for the reverse time and reverse distance of the Au plasma are deduced, respectively, indicating that the cubic value for each of both peak temperatures is proportional to the density of the low-Z foams. The main conclusions of analytic theory are verified by numerical simulation through using the modified radiation-hydrodynamic program MULTI. It is shown that the power exponents of scaling law in high-Z plasma ablation keep unchanged in a wide range of density of low-Z foams. The range of validity of the model is discussed.
      Corresponding author: Meng Guang-Wei, meng_guangwei@iapcm.ac.cn ; Zhao Ying-Kui, zhao_yingkui@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200)
    [1]

    Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2

    [2]

    Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [5]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [6]

    Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar

    [7]

    Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar

    [8]

    Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar

    [9]

    Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar

    [10]

    Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar

    [11]

    Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar

    [12]

    Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar

    [13]

    Marshak R E 1958 Phys. Fluids 1 24Google Scholar

    [14]

    Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240

    [15]

    Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar

    [16]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar

    [17]

    Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar

    [18]

    Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747

    [19]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar

    [20]

    Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar

    [21]

    Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar

    [22]

    Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar

    [23]

    Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar

    [24]

    Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar

    [25]

    李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202

    [26]

    蓝可, 贺贤土, 赖东显, 李双贵 2006 物理学报 55 3789Google Scholar

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar

    [27]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar

    [28]

    Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar

    [29]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar

    [30]

    Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar

    [31]

    Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar

    [32]

    Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar

    [33]

    Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar

    [34]

    Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [35]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar

    [36]

    曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477

    Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477

    [37]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [38]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [39]

    Ramis R 2017 J. Comput. Phys. 330 173Google Scholar

    [40]

    Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar

  • 图 1  (a)物理模型的简化; (b)一维模型的示意图; (c)波系示意图

    Fig. 1.  (a) Simplification of physical model; (b) one-dimensional model; (c) the wave system.

    图 2  Au等离子体的左界面在不同${d_1}$${d_2}$条件下的(a)位移和(b)速度随时间的变化; 折返时间和折返距离分别随(c) ${d_1}$(取${d_2} = 1\;{\rm{cm}}$), (d) ${d_2}$(取${d_{\rm{1}}} = 50 \;{\rm{cm}}$)的变化

    Fig. 2.  (a) Displacement and (b) velocity of the left interface of Au plasmas versus time under the condition of different ${d_1}$ and ${d_2}$. The reverse time and distance of Au plasmas versus (c) ${d_1}$ with ${d_2} = 1\;{\rm{cm}}$ and (d) ${d_2}$ with ${d_{\rm{1}}} = 50 \;{\rm{cm}}$.

    图 3  $T_{\rm{r}}^{} = 16 \;{\rm{MK}}$, ${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$条件下, ${\rm{0}}.02 \;{\text{μs}}$时网格的温度、速度、密度和压强随网格编号n的变化

    Fig. 3.  Temperature, velocity, density and pressure versus cell number n at 0.02 μs under the condition of $T_{\rm{r}}^{} = 16 \;{\rm{MK}}$ and ${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$.

    图 4  理论预测(取$\xi = \eta = 1$)的(a)折返时间和(b)折返距离随辐射源温度${T_{\rm{r}}}$的变化

    Fig. 4.  Theoretical prediction (with $\xi = \eta = 1$) of (a) reverse time and (b) reverse distance versus ${T_{\rm{r}}}$.

    图 5  折返时间和折返距离分别在不同的密度$ {\rho _{\rm{1}}}$(a) 0.05, (b) 0.5, (c) 1 g·cm–3下与辐射源温度Tr的变化关系; (d) 参数ξη$ {\rho _{\rm{1}}}$的变化

    Fig. 5.  Reverse time and distance versus Tr under different density $ {\rho _{\rm{1}}}$ of (a) 0.05, (b) 0.5, and (c) 1 g·cm–3. (d) ξ and η versus $ {\rho _{\rm{1}}}$.

    图 6  折返时间和折返距离的(a)峰值温度${T_{\rm{m}}}$和(b)峰值温度的三次方$T_{\rm{m}}^{\rm{3}}$随密度${\rho _{\rm{1}}}$的变化

    Fig. 6.  (a) The peak temperature ${T_{\rm{m}}}$ and (b) $T_{\rm{m}}^{\rm{3}}$ of reverse time and distance versus ${\rho _{\rm{1}}}$.

    图 A1  (a)辐射温度和Au等离子体密度的空间分布; (b)$ {t_{\rm{s}}} $随辐射源温度${T_{\rm{r}}}$的变化; (c)烧蚀压和(d)烧蚀质量随时间的变化

    Fig. A1.  (a) Temperature and density versus distance; (b)${t_{\rm{s}}}$ versus ${T_{\rm{r}}}$; (c) ablation pressure versus time; (d) ablated mass versus time.

    表 A1  bl的拟合值随${T_{\rm{r}}}$的变化

    Table A1.  b and l versus ${T_{\rm{r}}}$

    ${T_{\rm{r}}}$/MKbl$l - b$
    6–0.478170.536631.01480
    8–0.474790.528831.00362
    10–0.468180.521920.99009
    12–0.476330.516260.99259
    14–0.471610.511220.98283
    16–0.470830.507640.97846
    下载: 导出CSV
  • [1]

    Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2

    [2]

    Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [5]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [6]

    Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar

    [7]

    Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar

    [8]

    Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar

    [9]

    Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar

    [10]

    Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar

    [11]

    Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar

    [12]

    Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar

    [13]

    Marshak R E 1958 Phys. Fluids 1 24Google Scholar

    [14]

    Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240

    [15]

    Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar

    [16]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar

    [17]

    Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar

    [18]

    Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747

    [19]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar

    [20]

    Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar

    [21]

    Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar

    [22]

    Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar

    [23]

    Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar

    [24]

    Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar

    [25]

    李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202

    [26]

    蓝可, 贺贤土, 赖东显, 李双贵 2006 物理学报 55 3789Google Scholar

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar

    [27]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar

    [28]

    Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar

    [29]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar

    [30]

    Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar

    [31]

    Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar

    [32]

    Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar

    [33]

    Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar

    [34]

    Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [35]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar

    [36]

    曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477

    Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477

    [37]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [38]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [39]

    Ramis R 2017 J. Comput. Phys. 330 173Google Scholar

    [40]

    Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用. 物理学报, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [3] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [4] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析. 物理学报, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [7] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [8] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [9] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [10] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [11] 陈明, 李爽, 崔清强, 刘向东. 激光烧蚀高纯Zn形成的微米金属球体对后续脉冲激光的耦合增强效应. 物理学报, 2013, 62(16): 165202. doi: 10.7498/aps.62.165202
    [12] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [13] 张璐, 杨家敏. X射线烧蚀泡沫-固体靶增压机理研究. 物理学报, 2012, 61(4): 045203. doi: 10.7498/aps.61.045203
    [14] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [15] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [16] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [17] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [18] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理. 物理学报, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] 张钧, 裴文兵, 古培俊, 隋成之, 常铁强. 辐射烧蚀的自调制准定态模型. 物理学报, 1996, 45(10): 1677-1687. doi: 10.7498/aps.45.1677
计量
  • 文章访问数:  7232
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-07-15
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回