搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三能级钾原子气体三维傅里叶变换频谱的解析解

赵超樱 谭维翰

引用本文:
Citation:

三能级钾原子气体三维傅里叶变换频谱的解析解

赵超樱, 谭维翰

Analytical solution of three-dimensional Fourier transform frequency spectrum for three-level potassium atomic gas

Zhao Chao-Ying, Tan Wei-Han
PDF
HTML
导出引用
  • 利用投影切片定理、傅里叶位移定理和误差函数给出三能级钾原子气体三维傅里叶变换频谱在T = 0界面的解析解. 固定均匀线宽, 非均匀展宽和对角线相关系数可以定量地识别, 通过在适当方向上拟合三维傅里叶变换频谱谱峰的切片来确定. 结果表明, 非均匀展宽增大, 频谱图沿着对角线方向延伸, 对角线相关系数增大, 频谱图逐渐变圆, 振幅也逐渐变小.
    With the development of laser technology in the field of optics, ultra-fast optics has become an important research field. Compared with the traditional technology, ultrafast optics can be realized not only under shorter pulse function, but also on a smaller scale, which can more quickly reflect the dynamic process. We present an analytical calculation of the full three-dimensional (3D) coherent spectrum with a finite duration two-dimensional (2D) Gaussian pulse envelope. Our starting point is the solution of the optical Bloch equations for three-level potassium atomic gas in the 3D time domain by using the projection-slice theorem, error function and Fourier-shift theorem of 3D Fourier transform. These principles are used to calculate and simplify the third-order polarization equation generated by the device, and the analytical calculation of three-dimensional Fourier transform frequency spectrum at T = 0 is obtained. We simulate the analytic solution by using mathematics software. By comparing the simulations with the experimental results, with the homogeneous line-width fixed, we can obtain the relationship among the in-homogeneous broadening, the correlation diagonal coefficients and the three-dimensional spectrum characteristics, which can be identified quantitatively by fitting the slices of three-dimensional Fourier transform spectrum peaks in an appropriate direction. The results show that the three-dimensional Fourier transform spectrum will extend along the diagonal direction with the increasing of the in-homogeneous broadening, and the spectrogram progressively becomes a circle with the increasing of the diagonal correlation coefficient, and the amplitude also gradually turns smaller. According to the analytical solution, we give a complete two-dimensional spectrum of the T = 0 interface. The results can be fit to the experimental 3D coherent spectrum for arbitrary inhomogeneity.
      通信作者: 赵超樱, zchy49@hdu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11504074)和教育部量子光学重点实验室(批准号: KF201801)资助的课题
      Corresponding author: Zhao Chao-Ying, zchy49@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11504074) and the Key Laboratory of Quantum Optics, Ministry of Education, China (Grant No. KF201801)
    [1]

    Ernst R R, Bodenhausen G, Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon Press)

    [2]

    Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425Google Scholar

    [3]

    Siemens M E, Moody G, Li H B, Bristow A D, Cundiff S T 2010 Opt. Express 18 17699Google Scholar

    [4]

    Fecko C J, Eaves J D, Loparo J J, Tokmakoff A, Geissler P L 2003 Science 301 1698Google Scholar

    [5]

    Turner D B, Wen P, Arias D H, Nelson K A, Li H B, Moody G, Siemens M E, Cundiff S T 2012 Phys. Rev. B 85 201303Google Scholar

    [6]

    Cundiff S T, Bristow A D, Siemen M, Li H B, Moody G, Karaiskaj D, Dai X C, Zhang T H 2012 IEEE J. Sel. Top Quant. 18 318Google Scholar

    [7]

    Nardin G, Moody G, Singh R, Autry T M, Li H B, Morier-Genoud F, Cundiff S T 2014 Phys. Rev. Lett. 112 046402Google Scholar

    [8]

    Moody G, Akimov I A, Li H B, Singh R, Yakovlev D R, Karczewski G, Wiater M, Wojtowicz T, Bayer M, Cundiff S T 2014 Phys. Rev. Lett. 112 097401Google Scholar

    [9]

    Li H B, Bristow A D, Siemens M E, Moody G, Cundiff S T 2013 Nat. Commun. 4 1390Google Scholar

    [10]

    Bell J D, Conrad R, Siemens M E 2015 Opt. Lett. 4 1157

    [11]

    Titze M, Li H B 2017 Phys. Rev. A 96 032508Google Scholar

    [12]

    Dai X C, Bristow A D, Cundiff S T 2010 Phys. Rev. A 82 052503Google Scholar

    [13]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201Google Scholar

    [14]

    赵威, 周肇宇, 杨金新, 戴星灿 2015 物理学进展 35 177

    Zhao W, Zhou Z Y, Yang J X, Dai X C 2015 Prog. Phys. 35 177

    [15]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S T, Xiao M 2017 Opt. Express 25 21115Google Scholar

    [16]

    Zhao W, Qin Z Y, Zhang C F, Wang G D, Li B, Dai X C, Xiao M 2019 J. Phys. Chem. Lett. 10 1251Google Scholar

    [17]

    Huang T Y, Li X H, Shum P P, Wang Q J, Shao X G, Wang L L, Li H Z, Wu Z F, Dong X Y 2015 Opt. Express 23 340Google Scholar

    [18]

    Wang L, Li X H, Wang C, Luo W F, Feng T C, Zhang Y, Zhang H 2019 Chem. Nanomater. Bio. 5 1233

    [19]

    Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F 2019 Small 15 1902811Google Scholar

    [20]

    Zhao Y, Guo P L, Li X H, Jin Z W 2019 Carbon 149 336Google Scholar

    [21]

    Garrett-Roe S, Hamm P 2009 J. Chem. Phys. 130 164510Google Scholar

    [22]

    Mukherjee S S, Skoff D R, Middleton C T, Zanni M T 2013 J. Chem. Phys. 139 144205Google Scholar

    [23]

    李淳飞 2009 非线性光学 (北京: 电子工业出版社) 第57页

    Li C F 2009 Nonlinear Optics (Beijing: Electronics industry Press) p57 (in Chinese)

  • 图 1  四波混频原理图

    Fig. 1.  Four wave mixing schematic.

    图 2  (a) 二维时域; (b) 光子回波信号的频率坐标; (c) 二维时域投影在对应于沿${\hat \omega _{{t'}}}$的切片的对角线上; (d)沿${\hat \omega _{{\tau '}}}$的切片对应的交叉对角线上的二维时域投影

    Fig. 2.  (a) 2D time; (b) frequency coordinates for photon echo signals; (c) 2D time projection onto the diagonal corresponding to a slice along ${\hat \omega _{{t'}}}$; (d) 2D time projection onto the cross diagonal corresponding to a slice along ${\hat \omega _{{\tau '}}}$.

    图 3  ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 1$${S_{C{\rm{1}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Fig. 3.  The three-dimensional Fourier transform spectrum ${S_{C{\rm{1}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 1$: (a) Real part; (b) imaginary part; (c) module.

    图 4  ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$${S_{C2}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Fig. 4.  The three-dimensional Fourier transform spectrum ${S_{C2}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$: (a) Real part; (b) imaginary part; (c) module.

    图 5  ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, $R = 1$${S_{C3, E{\rm{3}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Fig. 5.  The three-dimensional Fourier transform spectrum ${S_{C3, E{\rm{3}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = $ 0.05 THz, $R = 1$: (a) Real part; (b) imaginary part; (c) module.

    图 6  ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$${S_{C4, E4}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Fig. 6.  The three-dimensional Fourier transform spectrum ${S_{C4, E4}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = $ 0.05 THz, $R = 0.5$ (a) Real part; (b) imaginary part; (c) module.

    图 7  三维傅里叶转换频谱图 (a) 参考文献[11]中的图5(a), ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, (b)$R = 1$; (c)$R = 0.5$

    Fig. 7.  Three-dimensional Fourier transform spectrum: (a) Fig. 5(a) in Ref. [11], ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = $ 0.2 THz; (b)$R = 1$; (c)$R = 0.5$.

    图 8  R不同时, 三维傅里叶转换频谱, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$ (a)$R = 1$; (b)$R = 0.5$

    Fig. 8.  The three-dimensional Fourier transform spectrum with ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$ for different R: (a) $R = 1$; (b) $R = 0.5$.

    表 1  非均匀展宽和对角线相关系数之间的关系

    Table 1.  The relation between in-homogeneous line-width and the diagonal correlation coefficient.

    xyz
    ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}}$, $R = {\rm{1}}$0${\rm{4}}{\text{δ}} \omega _{10}^2$0
    ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}}$, $R \ne {\rm{1}}$$2\left( {1 - R} \right){\text{δ}} \omega _{10}^2$$2\left( {{\rm{1}} + R} \right){\text{δ}} \omega _{10}^2$0
    ${\text{δ} } {\omega _{10} } = m{\text{δ} } {\omega _{20} },$$R = {\rm{1}}$${\left(1 - \dfrac{1}{m}\right)^2}{\text{δ}} \omega _{10}^2$${\left(1 + \dfrac{1}{m}\right)^2}{\text{δ}} \omega _{10}^2$$\left(1- \dfrac{1}{{{m^2}}}\right){\text{δ}} \omega _{10}^2$
    ${\text{δ} } {\omega _{10} } = m{\text{δ} } {\omega _{20} },$$R \ne {\rm{1}}$$\dfrac{{({m^2} - 2 Rm + 1)}}{{{m^2}}}{\text{δ}} \omega _{10}^2$$\dfrac{{({m^2} + 2 Rm + 1)}}{{{m^2}}}{\text{δ}} \omega _{10}^2$$\left(1 - \dfrac{1}{{{m^2}}}\right){\text{δ}} \omega _{10}^2$
    下载: 导出CSV
  • [1]

    Ernst R R, Bodenhausen G, Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon Press)

    [2]

    Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425Google Scholar

    [3]

    Siemens M E, Moody G, Li H B, Bristow A D, Cundiff S T 2010 Opt. Express 18 17699Google Scholar

    [4]

    Fecko C J, Eaves J D, Loparo J J, Tokmakoff A, Geissler P L 2003 Science 301 1698Google Scholar

    [5]

    Turner D B, Wen P, Arias D H, Nelson K A, Li H B, Moody G, Siemens M E, Cundiff S T 2012 Phys. Rev. B 85 201303Google Scholar

    [6]

    Cundiff S T, Bristow A D, Siemen M, Li H B, Moody G, Karaiskaj D, Dai X C, Zhang T H 2012 IEEE J. Sel. Top Quant. 18 318Google Scholar

    [7]

    Nardin G, Moody G, Singh R, Autry T M, Li H B, Morier-Genoud F, Cundiff S T 2014 Phys. Rev. Lett. 112 046402Google Scholar

    [8]

    Moody G, Akimov I A, Li H B, Singh R, Yakovlev D R, Karczewski G, Wiater M, Wojtowicz T, Bayer M, Cundiff S T 2014 Phys. Rev. Lett. 112 097401Google Scholar

    [9]

    Li H B, Bristow A D, Siemens M E, Moody G, Cundiff S T 2013 Nat. Commun. 4 1390Google Scholar

    [10]

    Bell J D, Conrad R, Siemens M E 2015 Opt. Lett. 4 1157

    [11]

    Titze M, Li H B 2017 Phys. Rev. A 96 032508Google Scholar

    [12]

    Dai X C, Bristow A D, Cundiff S T 2010 Phys. Rev. A 82 052503Google Scholar

    [13]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201Google Scholar

    [14]

    赵威, 周肇宇, 杨金新, 戴星灿 2015 物理学进展 35 177

    Zhao W, Zhou Z Y, Yang J X, Dai X C 2015 Prog. Phys. 35 177

    [15]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S T, Xiao M 2017 Opt. Express 25 21115Google Scholar

    [16]

    Zhao W, Qin Z Y, Zhang C F, Wang G D, Li B, Dai X C, Xiao M 2019 J. Phys. Chem. Lett. 10 1251Google Scholar

    [17]

    Huang T Y, Li X H, Shum P P, Wang Q J, Shao X G, Wang L L, Li H Z, Wu Z F, Dong X Y 2015 Opt. Express 23 340Google Scholar

    [18]

    Wang L, Li X H, Wang C, Luo W F, Feng T C, Zhang Y, Zhang H 2019 Chem. Nanomater. Bio. 5 1233

    [19]

    Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F 2019 Small 15 1902811Google Scholar

    [20]

    Zhao Y, Guo P L, Li X H, Jin Z W 2019 Carbon 149 336Google Scholar

    [21]

    Garrett-Roe S, Hamm P 2009 J. Chem. Phys. 130 164510Google Scholar

    [22]

    Mukherjee S S, Skoff D R, Middleton C T, Zanni M T 2013 J. Chem. Phys. 139 144205Google Scholar

    [23]

    李淳飞 2009 非线性光学 (北京: 电子工业出版社) 第57页

    Li C F 2009 Nonlinear Optics (Beijing: Electronics industry Press) p57 (in Chinese)

  • [1] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [3] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [4] 余胜, 刘焕章, 刘胜帅, 荆杰泰. 基于四波混频过程和线性分束器产生四组份纠缠. 物理学报, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [5] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究. 物理学报, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [8] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应. 物理学报, 2016, 65(15): 154206. doi: 10.7498/aps.65.154206
    [9] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [10] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光. 物理学报, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [11] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析. 物理学报, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [12] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [13] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [14] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [15] 李培丽, 黄德修, 张新亮. 基于PolSK调制的四波混频型超快全光译码器. 物理学报, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [18] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究. 物理学报, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [19] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
计量
  • 文章访问数:  6861
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 修回日期:  2019-10-21
  • 刊出日期:  2020-01-20

/

返回文章
返回