搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理的含空位α-Fe和H原子相互作用研究

成应晋 杨超飞 薛钢 王涛 张磊 李梅娥

引用本文:
Citation:

基于第一性原理的含空位α-Fe和H原子相互作用研究

成应晋, 杨超飞, 薛钢, 王涛, 张磊, 李梅娥

Investigation of interaction between α-Fe metal and H atom by ab-initio method

Cheng Ying-Jin, Yang Chao-Fei, Xue Gang, Wang Tao, Zhang Lei, Li Mei-E
PDF
HTML
导出引用
  • 氢致裂纹是制约超高强度钢应用的关键问题, 掌握扩散氢的分布行为有助于弄清氢致裂纹的形成机理. 本文采用第一性原理方法计算了H原子占据α-Fe晶格间隙和空位时的情况, 得到了晶体的稳定构型及能量, 并据此分析了H原子在晶格间隙和空位中的溶解倾向; 从Mulliken布居、电子密度分布、态密度分布等角度分析了H原子与α-Fe晶体间隙和空位之间的相互作用. 结果表明: 间隙H原子倾向占据α-Fe四面体间隙位, 其1s轨道电子与Fe的4s轨道电子呈微弱共轭杂化; 空位是强氢陷阱, H原子倾向占据空位内壁附近的等电荷面. 在真空0 K条件下单空位最多稳定溶解3个H原子, 且H原子之间未表现出自发形成H2的倾向; 间隙和空位中的H原子溶入改变了Fe晶格内电子分布导致原子结合力弱化, 并在局部区域形成反键. 基于第一性原理能量计算结果开展热力学分析, 分析结果表明大多数情况下间隙H原子都是H主要的固溶形式, H平衡溶解度计算结果与实际符合良好.
    Hydrogen-induced cracking (HIC) is a key problem restricting the application of ultra-high strength steel. It is necessary to analyze the distribution of diffusible hydrogen to reveal the mechanism of HIC. The site occupation tendency of H in interstitial and vacancy positions are investigated by the ab-initio method, and the stable configuration and steady state energy are obtained. The solution tendency of H atom in interstitial and vacancy positions is analyzed based on the aforementioned results. Specifically, the Mulliken population, density of states, charge density difference are calculated and used to analyze the interaction between α-Fe metal and H atom. The results show that the dissolved H tends to occupy the interstitial sites of the body-centered cubic, the weak hybridization interaction between the interstitial hydrogen and its nearest neighbour Fe atom is contributed by the H 1s orbital and Fe 4s orbital. Vacancies can capture H atoms easily and H atoms tend to occupy the isoelectric surface near the inwall of the vacancies. A vacancy defect can hold up to three H atoms which are difficult to combine with each other to form H2 molecule by covalent bond. H atoms in vacancies and at interstitial positions change the charge distribution of the Fe lattice, which weakens the binding force of the atoms and forms anti-bonding orbital in local area. The proposed thermodynamical model allows the determining of the equilibrium vacancy and the dissolved H concentration for a given temperature and H chemical potential in the reservoir, and the calculated results are in good agreement with the actual results.
      通信作者: 成应晋, 492602560@qq.com
    • 基金项目: 国家级-国家重点基础研究发展计划(613217)
      Corresponding author: Cheng Ying-Jin, 492602560@qq.com
    [1]

    张文钺 1999 焊接冶金学(基本原理)(北京: 机械工业出版社) 第241—244页

    Zhang W Y 2012 Welding Metallurgy (Fundamental Principle) (Beijing: China Machine Press) pp241–244 (in Chinese)

    [2]

    张敬强 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang J Q 2015 Ph.D Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Tateyama Y, Ohno T 2003 ISIJ Internation 43 573Google Scholar

    [4]

    Geng W T, Wan L, Du J P, Ogata S 2017 Scripta Materialia 134 105Google Scholar

    [5]

    MonasterioP R, Lau T T, Yip S, van Vliet K J 2009 Phys. Rev. Lett. 103 085501Google Scholar

    [6]

    Nagumo M, Nakamura M, Taika K 2001 Metall. Mater. Trans. A 32 339Google Scholar

    [7]

    Först C J, Slycke J, van Vliet K J, Yip S 2006 Phys. Rev. Lett. 96 175501Google Scholar

    [8]

    Fukai Y 1983 Jpn. J. Appl. Phys. 22 207Google Scholar

    [9]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    ZhangF C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [10]

    Du Y A, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R 2011 Phys. Rev. B 84 144121Google Scholar

    [11]

    Nazarov R, Hickel T, Neugebauer J 2014 Phys. Rev. B 89 144108Google Scholar

    [12]

    Nazarov R, Hickel T, Neugebauer J 2012 Phys. Rev. B 85 144118Google Scholar

    [13]

    Hickel T, Grabowski B, Körmann F, Neugebauer J 2011 J. Phys. Condens. Mater. 24 053202Google Scholar

    [14]

    Ramasubramaniam A, Itakura M, Carter EA 2009 Phys. Rev. B 79 174101Google Scholar

    [15]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [16]

    Milman V, Winkler B, White JA, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [17]

    Perdew JP, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [19]

    Acet M, Zähres H, Wassermann E F, Pepperhoff W 1994 Phys. Rev. B 49 6012Google Scholar

    [20]

    Hayward E, Fu C C 2013 Phys. Rev. B 87 174103Google Scholar

    [21]

    Baroni S, de Gironcoli S, Dal Corso A C, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [22]

    Bozzolo G, Ferrante J 1992 Phys. Rev. B 46 8600Google Scholar

    [23]

    Bhatia M A, Groh S, Solanki K N 2014 J. Appl. Phys. 116 064302Google Scholar

    [24]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105Google Scholar

    [25]

    Mclellan R B, Harkins C G 1975 Mater. Sci. Eng. 18 5Google Scholar

    [26]

    Lynch SP 2013 Metall. Mater. Trans. A 44 1209Google Scholar

    [27]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501Google Scholar

    [28]

    Ismer L, Hickel T, Neugebauer J 2010 Phys. Rev. B 81 094111Google Scholar

    [29]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [30]

    Nazarov R, Hickel T, Neugebauer J 2010 Phys. Rev. B 82 224104Google Scholar

    [31]

    Speight J G 2005 Lange’s Handbook of Chemistry (16th Ed.) (New York: The McGraw-Hill Companies, Inc) pp1299−1309

  • 图 1  α-Fe+H的晶体结构 (a) T-site; (b) O-site

    Fig. 1.  Crystalline structure of α-Fe+H: (a) T-site; (b) O-site.

    图 2  α-Fe+H (T-site)的分波电子态密度 (a) 固溶前后 H 原子; (b) 固溶前后最近邻Fe原子; (c) 四面体间隙H原子; (d) 间隙H原子最近邻Fe原子

    Fig. 2.  Partial electronic density of state of α-Fe+H (T-site): (a) Free H atom and interstitial H atom; (b) Fe atom in perfect α-Fe crystal and the nearest neighbour of interstitial H atom; (c) H atom in tetrahedral interstice; (d) the nearest neighbour Fe atom of interstitial H atom.

    图 3  α-Fe+H(T-site)的差分电荷密度

    Fig. 3.  Electron density difference of α-Fe+H(T-site).

    图 4  α-Fe+(nH-Vac)的晶体结构 (a) α-Fe+Vac; (b) α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac)

    Fig. 4.  Crystalline structure of α-Fe+(nH-Vac): (a) α-Fe+Vac; (b)α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac).

    图 5  α-Fe+(nH-Vac)的等电荷面和差分电荷密度 (a) α-Fe+Vac ((100)面); (b) α-Fe+Vac ((110)面); (c) α-Fe+Vac等电荷面; (d) α-Fe+(2H-Vac) ((010)面); (e) α-Fe+(2H-Vac)等电荷面

    Fig. 5.  Isoelectronic density surface and electron density difference of α-Fe+(nH-Vac): (a) Electron density difference of α-Fe+Vac in surface (100); (b) electron density difference of α-Fe+Vac in surface (110); (c) isoelectric density surface of α-Fe+Vac; (d) electron density difference of α-Fe+(2H-Vac) in surface (010); (e) isoelectric density surface of α-Fe+(2H-Vac).

    图 6  α-Fe+Vac+H(T-site)的晶体结构

    Fig. 6.  Crystalline structure of α-Fe+Vac+H(T-site).

    图 7  0 K下缺陷形成能随μH变化情况

    Fig. 7.  Formation energy of defects at 0 K for different H chemical potentials.

    图 8  缺陷随TμH变化情况 (a) 空位平衡浓度; (b) 空位内H平衡浓度; (c) 间隙H平衡浓度

    Fig. 8.  Equilibrium concentration of defects for different temperature and H chemical potentials: (a) Equilibrium concentration of vacancies; (b) equilibrium concentration of H occupying in vacancies; (c) equilibrium concentration of H occupying in interstitial positions.

    图 9  含空位α-Fe晶体H总平衡浓度

    Fig. 9.  Equilibrium total concentration of H of α-Fe containing vacancies.

    图 10  Devnathan-Stachurski双电解池示意图

    Fig. 10.  Schematic diagram of Devnathan-Stachurski double electrolytic cell.

    表 1  α-Fe+H的晶格常数和晶体结构

    Table 1.  Lattice parameters and crystalline structure of α-Fe+H.

    晶体类型abcα/(°)β/(°)γ/(°)V空间群
    α-Fe+H(T-site)5.68435.66125.680489.99989.99990.0005.6843115(P-4m2)
    α-Fe+H(O-site)5.80195.61125.611290.00090.00090.0005.8019123(P4/mmm)
    下载: 导出CSV

    表 2  α-Fe和α-Fe+H结合能、形成能和溶解热

    Table 2.  Binding energy, formation energy, and heat of solution of α-Fe and α-Fe+H.

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α-Fe+H(T-site)–13861.0500.2465.1820.3900.390
    α-Fe–13845.3445.530
    下载: 导出CSV

    表 3  α-Fe+H (T-site)晶体原子轨道布居

    Table 3.  Atomic orbital population of α-Fe+H (T-site).

    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe-H(T-site)H1.34001.34–0.34
    Fe2, Fe40.620.666.657.930.07
    Fe3, Fe110.620.676.657.940.06
    Fe12, Fe100.650.726.627.990.01
    Fe1, Fe9, Fe13, Fe14, Fe160.650.726.627.990.01
    Fe8, Fe60.650.746.618.01–0.01
    α-FeFe0.680.706.628.000
    自由态H1.00001.000
    下载: 导出CSV

    表 4  α-Fe-H (T-site)晶体键布居

    Table 4.  Bond population of α-Fe+H (T-site).

    晶体类型原子对距离/Å键布居
    α-Fe-H (T-site)Fe2-H1.64940.16
    Fe3-H1.65070.16
    Fe2-Fe32.5558–0.09
    Fe2-Fe42.7286–0.14
    Fe8-Fe112.47830.17
    Fe3-Fe122.44710.18
    Fe8-Fe162.84010.05
    Fe7-Fe82.46010.15
    α-Fe-H (O-site) Fe2-Fe42.6287–0.28
    α-FeFe-Fe2.44000.14
    Fe-Fe2.81740.06
    下载: 导出CSV

    表 5  α-Fe+(nH-Vac)的晶格常数和晶体结构

    Table 5.  Lattice parameters and crystalline structure of α-Fe+(nH-Vac).

    晶体类型abcα/(°)β/(°)γ/(°)V空间群
    α-Fe+Vac5.60335.60335.603390.00090.00090.000175.923221${\rm{(}}Pm\overline {{\rm{3}}m} )$
    α-Fe+(Vac-1H)5.63215.61035.610390.00090.00189.999177.27099${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-2H)5.62855.62855.648490.00090.00090.000178.940123(P4/MMM)
    α-Fe+(Vac-3H)5.62975.65985.685390.00490.01190.002181.15425(PMM2)
    α-Fe+(Vac-4H)5.67275.69435.672389.96690.54089.973183.22138(AMM2)
    α-Fe+(Vac-5H)5.69055.70865.709390.00090.00490.002185.46799${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-6H)5.74075.72705.720889.43389.69189.692188.0645(C2)
    下载: 导出CSV

    表 6  α-Fe+(nH-Vac)的结合能、形成能和溶解热

    Table 6.  Binding energy, formation energy, and heat of solution of α-Fe+(nH-Vac).

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{_{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac–12977.5935.3692.416
    α–Fe+(Vac-1H)–12993.9330.1415.0551.928–0.347
    α–Fe+(Vac-2H)–13010.2620.2954.7771.450–0.324
    α–Fe+(Vac-3H)–13026.3300.4784.5131.234–0.034
    α–Fe+(Vac-4H)–13042.3590.6704.2751.0560.014
    α–Fe+(Vac-5H)–13058.2990.8894.0550.9680.131
    α–Fe+(Vac-6H)–13073.9951.1493.8421.1230.438
    下载: 导出CSV

    表 7  α-Fe+(nH-Vac)对H原子的陷阱能

    Table 7.  Hydrogen trapping energy of α-Fe+(nH-Vac)

    晶体类型$E_{{\rm{trap}}}^{\rm{H}}$/eV
    不考虑${E_{{\rm{ZP}}}}$考虑${E_{{\rm{ZP}}}}$
    α-Fe+(Vac-1H)0.6330.778
    α-Fe+(Vac-2H)0.6230.627
    α-Fe+(Vac-3H)0.3610.211
    α-Fe+(Vac-4H)0.322–0.011
    α-Fe+(Vac-5H)0.227–0.297
    α-Fe+(Vac-6H)–0.028–0.772
    下载: 导出CSV

    表 8  α-Fe+(nH-Vac)晶体原子轨道布居

    Table 8.  Atomic orbital population of α-Fe+(nH-Vac).

    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe+VacFe7, Fe11, Fe130.740.726.688.13–0.13
    Fe3, Fe5, Fe90.680.736.638.04–0.04
    其余Fe原子0.660.676.607.930.07
    α-Fe+(Vac-2H)Fe130.710.716.738.15–0.15
    Fe90.660.706.627.980.02
    Fe110.710.716.658.07–0.07
    α-Fe+Vac—α-Fe+(Vac-6H)H11.20—1.22001.20—1.22–0.20— –0.22
    自由态H1.00001.000
    下载: 导出CSV

    表 9  α-Fe+Vac+H(T-site)的结合能、形成能和溶解热

    Table 9.  Binding energy, formation energy, and heat of solution of α-Fe+Vac+H(T-site).

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac+H(T-site)–12993.354 — –12993.3530.248—0.2505.0122.755—2.7560.339—0.340
    下载: 导出CSV

    表 10  H平衡溶解度计算值和实验值

    Table 10.  Calculated and test value of equilibrium concentration of H atom.

    温度/KμH/eVcH/%
    计算值实验值
    298.15–0.2392.08 × 10–24.41 × 10–2
    2.88 × 10–2, 其中晶格溶H占总扩散H含量的43%[2]
    下载: 导出CSV
  • [1]

    张文钺 1999 焊接冶金学(基本原理)(北京: 机械工业出版社) 第241—244页

    Zhang W Y 2012 Welding Metallurgy (Fundamental Principle) (Beijing: China Machine Press) pp241–244 (in Chinese)

    [2]

    张敬强 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang J Q 2015 Ph.D Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Tateyama Y, Ohno T 2003 ISIJ Internation 43 573Google Scholar

    [4]

    Geng W T, Wan L, Du J P, Ogata S 2017 Scripta Materialia 134 105Google Scholar

    [5]

    MonasterioP R, Lau T T, Yip S, van Vliet K J 2009 Phys. Rev. Lett. 103 085501Google Scholar

    [6]

    Nagumo M, Nakamura M, Taika K 2001 Metall. Mater. Trans. A 32 339Google Scholar

    [7]

    Först C J, Slycke J, van Vliet K J, Yip S 2006 Phys. Rev. Lett. 96 175501Google Scholar

    [8]

    Fukai Y 1983 Jpn. J. Appl. Phys. 22 207Google Scholar

    [9]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    ZhangF C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [10]

    Du Y A, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R 2011 Phys. Rev. B 84 144121Google Scholar

    [11]

    Nazarov R, Hickel T, Neugebauer J 2014 Phys. Rev. B 89 144108Google Scholar

    [12]

    Nazarov R, Hickel T, Neugebauer J 2012 Phys. Rev. B 85 144118Google Scholar

    [13]

    Hickel T, Grabowski B, Körmann F, Neugebauer J 2011 J. Phys. Condens. Mater. 24 053202Google Scholar

    [14]

    Ramasubramaniam A, Itakura M, Carter EA 2009 Phys. Rev. B 79 174101Google Scholar

    [15]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [16]

    Milman V, Winkler B, White JA, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [17]

    Perdew JP, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [19]

    Acet M, Zähres H, Wassermann E F, Pepperhoff W 1994 Phys. Rev. B 49 6012Google Scholar

    [20]

    Hayward E, Fu C C 2013 Phys. Rev. B 87 174103Google Scholar

    [21]

    Baroni S, de Gironcoli S, Dal Corso A C, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [22]

    Bozzolo G, Ferrante J 1992 Phys. Rev. B 46 8600Google Scholar

    [23]

    Bhatia M A, Groh S, Solanki K N 2014 J. Appl. Phys. 116 064302Google Scholar

    [24]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105Google Scholar

    [25]

    Mclellan R B, Harkins C G 1975 Mater. Sci. Eng. 18 5Google Scholar

    [26]

    Lynch SP 2013 Metall. Mater. Trans. A 44 1209Google Scholar

    [27]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501Google Scholar

    [28]

    Ismer L, Hickel T, Neugebauer J 2010 Phys. Rev. B 81 094111Google Scholar

    [29]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [30]

    Nazarov R, Hickel T, Neugebauer J 2010 Phys. Rev. B 82 224104Google Scholar

    [31]

    Speight J G 2005 Lange’s Handbook of Chemistry (16th Ed.) (New York: The McGraw-Hill Companies, Inc) pp1299−1309

  • [1] 张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安. 从头算分子动力学研究硫脲嘧啶及其互变异构体在低能电子作用下的解离过程. 物理学报, 2024, 73(2): 023101. doi: 10.7498/aps.73.20231304
    [2] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [4] 罗菊, 冯国英, 韩敬华, 沈雄, 张丽君, 丁坤艳. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, 69(8): 084201. doi: 10.7498/aps.69.20191933
    [5] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [6] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响. 物理学报, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [7] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [8] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究. 物理学报, 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [11] 张来斌, 任廷琦. 新型鸟嘌呤类似物y-鸟嘌呤及其异构体电子光谱性质的理论研究. 物理学报, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究. 物理学报, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [14] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [15] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 王洪波, 张景文, 杨晓东, 刘振玲, 徐庆安, 侯 洵. 氧化锌导电类型转化的热力学分析. 物理学报, 2005, 54(6): 2893-2898. doi: 10.7498/aps.54.2893
计量
  • 文章访问数:  9221
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-01-16
  • 刊出日期:  2020-03-05

/

返回文章
返回