搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逻辑器件响应特性的自治布尔网络调控

刘海芳 张建国 龚利爽 王云才

引用本文:
Citation:

基于逻辑器件响应特性的自治布尔网络调控

刘海芳, 张建国, 龚利爽, 王云才

Autonomous Boolean network regulation based on logic gates’ response characteristics

Liu Hai-Fang, Zhang Jian-Guo, Gong Li-Shuang, Wang Yun-Cai
PDF
HTML
导出引用
  • 自治布尔网络已成功应用于随机数产生、基因调控、储备池计算等领域. 为了在应用中合理选择器件使输出更好地满足各应用的需求, 本文研究了自治布尔网络中的逻辑器件响应特性变化时, 自治布尔网络输出状态随之变化的规律, 结果显示逻辑器件响应特性变化可以调控自治布尔网络输出在周期和混沌之间转变, 且能改变自治布尔网络输出序列的复杂程度. 进一步观察了逻辑器件响应特性和链路延时二维参数空间中输出序列复杂程度的分布, 结果显示快的逻辑门响应特性可以增强高复杂序列在链路延时参数空间的分布范围. 同时研究了自治布尔网络中任意逻辑器件的响应特性单独变化对网络输出状态的影响, 结果显示不同节点的器件响应特性对序列复杂程度的调控能力有差异. 研究表明, 逻辑器件响应特性可以调控网络输出序列复杂程度, 快的响应特性有利于高复杂混沌的稳定产生.
    Boolean networks (BNs) are nonlinear systems and each BN has a simple structure, thus it is easy to construct large networks. The BNs are becoming increasingly important as they have been widely used in many fields like random number generation, gene regulation, and reservoir computing. In recent years, autonomous Boolean networks (ABNs) have been proposed and realized by actual digital logic circuit. The BNs each have a clock or selection device to determine the update time of each node. Unlike BNs, ABNs have no device to control the update mechanism, and the update of each node is determined by response characteristics of the logic gate that make up the node, which leads to continuous and complicated outputs. Time series with different complexities including periodic and chaotic sequences can be generated by the ABNs, which is very meaningful in different applications.Research on the regulation of ABNs’ output is of big significance. Non-ideal response characteristics of the logic gates and time delay on the link are two major factors which can regulate the output state. Many studies focus on time delay on the link and indicate that the large delay inconsistency leads to complex outputs.In this paper, in order to study the regulation of ABNs’ output, it is demonstrated that the response characteristics of the logic gate can be continuously adjusted by the parameters in the ABNs’ equations. Then the effects of logic gates’ response characteristics on ABNs’ outputs are studied by simulation. The simulation results indicate that the ABNs’ outputs can transform between periodic and chaotic state with the change of logic gates’ response characteristics. Moreover, the interrelationship between logic gates’ response characteristics and propagation delays along the links is reinvestigated. The results show that the high complexity series space is extended by the fast logic gates’ response characteristics. Also the effects of different logic gates’ response characteristics on the ABNs’ output are compared, and the results indicate that node 2 has a good performance on the regulation of ABNs’ output while node 1 and node 3 show small effect on the ABNs’ output.It is concluded that the complexity of the ABNs’ output can be regulated by the logic gates’ response characteristics, and the high complexity series’ generation can be promoted by the fast logic gates’ response characteristics. This conclusion is conducive to the logic gates’ selection in random number generation, gene regulation, reservoir computing and other applications.
      通信作者: 王云才, wangyc@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61731014, 61671316)、山西省自然科学基金(批准号: 201801D121145)和山西省回国留学人员科研资助项目(批准号: 2017-重点2)资助的课题
      Corresponding author: Wang Yun-Cai, wangyc@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61731014, 61671316), the Natural Science Foundation of Shaanxi Province, China (Grant No. 201801D121145), and the Shanxi Scholarship Council of China (Grant No. 2017-key-2)
    [1]

    Gaucherel C, Thero H, Puiseux A, Bonhomme V 2017 Ecol. Complex 31 104114

    [2]

    Albert R, Barabasi A L 2000 Phys. Rev. Lett. 84 5660Google Scholar

    [3]

    Ghil M, Zaliapin I, Coluzzi B 2008 Physica D 237 2967Google Scholar

    [4]

    Kauffman S A 1969 J. Theor. Biol. 22 437Google Scholar

    [5]

    Bornholdt S 2008 Jr. Soc. Nterface 5 S85Google Scholar

    [6]

    Tran V, Mccall M N, Mcmurray H R, Almudevar A 2013 Front. Genet. 4 263

    [7]

    Chaves M, Albert R, Sontag E D 2005 J. Theor. Biol. 235 431Google Scholar

    [8]

    Farrow C L, Heidel J, Maloney J, Rogers J 2004 IEEE T. Neural. Networ. 15 348Google Scholar

    [9]

    Darby M S, Mysak L A 1993 Clim. Dyn. 8 241Google Scholar

    [10]

    Zhang R, Cavalcante H L D D S, Gao Z, Gauthier D J, Socolar J E S, Adams M M, Lathrop D P 2009 Phys. Rev. E 80 045202

    [11]

    Rosin D P, Rontani D, Gauthier D J 2013 Phys. Rev. E 87 040902Google Scholar

    [12]

    Dong LH, Yang H, Zeng Y 2017 13th International Conference on Computational Intelligence and Security, Hong Kong, China, DEC 15

    [13]

    Park M, Rodgers J C, Lathrop D P 2015 Microelectr. J. 46 1364Google Scholar

    [14]

    马荔, 张建国, 李璞, 徐航, 王云才 2018 中南大学学报 49 888

    Ma L, Zhang J G, Li P, Xu H, Wang Y C 2018 J. Cent. South. Univ. (Sci. Tech.) 49 888

    [15]

    张琪琪, 张建国, 李璞, 郭龑强, 王云才 2019 通信学报 40 2019014Google Scholar

    Zhang Q Q, Zhang J G, Li P, Guo Y Q, Wang Y C 2019 J. Commun. 40 2019014Google Scholar

    [16]

    Canaday D, Griffith A, Gauthier D J 2018 Chaos 28 123119Google Scholar

    [17]

    Haynes N D, Soriano M C, Rosin D P, Fischer I, Gauthier D J 2014 Phys. Rev. E 91 020801

    [18]

    Cheng X R, Sun M Y, Socolar J E S 2012 J. R. Soc. Interface 10 20120574

    [19]

    Sun M Y 2013 Ph. D. Dissertation (Berlin: Duke University).

    [20]

    Charlot N, Canaday D, Pomerance A, Gauthier D J 2020 arXiv: 1907.12542 v2 [cs. CR.]

    [21]

    Cavalcante H L D D S, Gauthier D J, Socolar J E S, Zhang R 2010 Phil. Trans. R. Soc. A 368 495

    [22]

    Rosin D P, Rontani D, Gauthier D J 2014 Phys. Rev. E 89 042907Google Scholar

    [23]

    Rosin D P, Rontani D, Haynes N D, Scholl E, Gauthier D J 2014 Phys. Rev. E 90 030902Google Scholar

    [24]

    D'Huys O, Lohmann J, Haynes N D, Gauthier D J 2016 Chaos 26 094810Google Scholar

    [25]

    龚利爽, 侯二林, 刘海芳, 李凯凯, 王云才 2019 通信学报 40 2019048

    Gong L S, Hou E L, Liu H F, Li K K, Wang Y C 2019 J. Commun. 40 2019048

    [26]

    Rosin D 2014 Ph. D. Dissertation (Berlin: Duke University).

    [27]

    Xiang S Y, Pan W, Li N Q, Zhang L Y, Zhu H N 2013 Opt. Commun. 311 294Google Scholar

    [28]

    Toker D, Sommer F T, D'Esposito M 2020 Commun. Biol. 3 11Google Scholar

    [29]

    Ghil M, Mullhaupt A 1985 J. Stat. Phys. 41 125Google Scholar

  • 图 1  异或非逻辑门示意图

    Fig. 1.  The schematic illustration of the XNOR logic gate.

    图 2  异或非逻辑门输入输出响应波形图 (a) 完全响应波形图; (b) 不完全响应波形图; (c) 非正确响应波形图

    Fig. 2.  I/O response waveform of XNOR logic gate: (a) Full response waveform; (b) incomplete response waveform; (c) incorrect response waveform.

    图 3  异或非逻辑门输入相同, τlp = 0.03, 0.15, 0.28, 0.40时输出波形 (a)输入波形; (b)输出波形

    Fig. 3.  Output waveforms of XNOR logic gate for τlp = 0.03, 0.15, 0.28, 0.40 when inputs are the same: (a) Input waveform; (b) output waveform.

    图 4  异或非逻辑门输出脉冲幅值和宽度随τlp变化曲线 (a) 输入波形图; (b) 输出脉冲幅值ymaxτlp变化曲线; (c) 输出脉冲宽度∆tYτlp变化曲线

    Fig. 4.  Output pulse amplitude and width as a function of τlp : (a) Input waveform; (b) output pulse amplitude as a function of τlp; (c) output pulse width as a function of τlp.

    图 5  自治布尔网络示意图

    Fig. 5.  Schematic illustration of autonomous Boolean network.

    图 6  自治布尔网络分岔图

    Fig. 6.  Bifurcation diagram of the autonomous Boolean network.

    图 7  自治布尔网络在τlp = 0.630, 0.305, 0.050 ns的模拟结果 (a1)−(a3) 时序; (b1)−(b3) 频谱; (c1)−(c3) ∆tLDP序列相图

    Fig. 7.  Simulation results of the autonomous Boolean network for τlp = 0.630, 0.305, 0.050 ns: (a1)−(a3) Time-evolution; (b1)−(b3) power spectra; (c1)−(c3) phase diagrams of ∆tLDP series.

    图 8  排序熵值在二维参数空间τlpτij上的分布图 (a) τij = τ12; (b) τij = τ13; (c) τij = τ22; (d) τij = τ21; (e) τij = τ31; (f) τij = τ33

    Fig. 8.  Two dimensional maps of H in the parameter space of τlp and τij: (a) τij = τ12; (b) τij = τ13; (c) τij = τ22; (d) τij = τ21; (e) τij = τ31; (f) τij = τ33.

    图 9  排序熵值在二维参数空间(τlp,i, τlp,j)上的分布图 (a1)−(a3) τlp,1 = 0.1, 0.3, 0.5 ns且(τlp,i, τlp,j) = (τlp,2, τlp,3); (b1)−(b3) τlp,2 = 0.1, 0.3, 0.5 ns且(τlp,i, τlp,j) = (τlp,1, τlp,3); (c1)−(c3) τlp,3 = 0.1, 0.3, 0.5 ns且(τlp,i, τlp, j) = (τlp,1, τlp,2)

    Fig. 9.  Two dimensional maps of H in the parameter space of (τlp,i, τlp,j): (a1)−(a3) τlp,1 = 0.1, 0.3, 0.5 ns and (τlp,i, τlp,j) = (τlp,2, τlp,3); (b1)−(b3) τlp,2 = 0.1, 0.3, 0.5 ns and (τlp,i, τlp,j) = (τlp,1, τlp,3); (c1)−(c3) τlp,3 = 0.1, 0.3, 0.5 ns and (τlp,i, τlp,j) = (τlp,1, τlp,2).

  • [1]

    Gaucherel C, Thero H, Puiseux A, Bonhomme V 2017 Ecol. Complex 31 104114

    [2]

    Albert R, Barabasi A L 2000 Phys. Rev. Lett. 84 5660Google Scholar

    [3]

    Ghil M, Zaliapin I, Coluzzi B 2008 Physica D 237 2967Google Scholar

    [4]

    Kauffman S A 1969 J. Theor. Biol. 22 437Google Scholar

    [5]

    Bornholdt S 2008 Jr. Soc. Nterface 5 S85Google Scholar

    [6]

    Tran V, Mccall M N, Mcmurray H R, Almudevar A 2013 Front. Genet. 4 263

    [7]

    Chaves M, Albert R, Sontag E D 2005 J. Theor. Biol. 235 431Google Scholar

    [8]

    Farrow C L, Heidel J, Maloney J, Rogers J 2004 IEEE T. Neural. Networ. 15 348Google Scholar

    [9]

    Darby M S, Mysak L A 1993 Clim. Dyn. 8 241Google Scholar

    [10]

    Zhang R, Cavalcante H L D D S, Gao Z, Gauthier D J, Socolar J E S, Adams M M, Lathrop D P 2009 Phys. Rev. E 80 045202

    [11]

    Rosin D P, Rontani D, Gauthier D J 2013 Phys. Rev. E 87 040902Google Scholar

    [12]

    Dong LH, Yang H, Zeng Y 2017 13th International Conference on Computational Intelligence and Security, Hong Kong, China, DEC 15

    [13]

    Park M, Rodgers J C, Lathrop D P 2015 Microelectr. J. 46 1364Google Scholar

    [14]

    马荔, 张建国, 李璞, 徐航, 王云才 2018 中南大学学报 49 888

    Ma L, Zhang J G, Li P, Xu H, Wang Y C 2018 J. Cent. South. Univ. (Sci. Tech.) 49 888

    [15]

    张琪琪, 张建国, 李璞, 郭龑强, 王云才 2019 通信学报 40 2019014Google Scholar

    Zhang Q Q, Zhang J G, Li P, Guo Y Q, Wang Y C 2019 J. Commun. 40 2019014Google Scholar

    [16]

    Canaday D, Griffith A, Gauthier D J 2018 Chaos 28 123119Google Scholar

    [17]

    Haynes N D, Soriano M C, Rosin D P, Fischer I, Gauthier D J 2014 Phys. Rev. E 91 020801

    [18]

    Cheng X R, Sun M Y, Socolar J E S 2012 J. R. Soc. Interface 10 20120574

    [19]

    Sun M Y 2013 Ph. D. Dissertation (Berlin: Duke University).

    [20]

    Charlot N, Canaday D, Pomerance A, Gauthier D J 2020 arXiv: 1907.12542 v2 [cs. CR.]

    [21]

    Cavalcante H L D D S, Gauthier D J, Socolar J E S, Zhang R 2010 Phil. Trans. R. Soc. A 368 495

    [22]

    Rosin D P, Rontani D, Gauthier D J 2014 Phys. Rev. E 89 042907Google Scholar

    [23]

    Rosin D P, Rontani D, Haynes N D, Scholl E, Gauthier D J 2014 Phys. Rev. E 90 030902Google Scholar

    [24]

    D'Huys O, Lohmann J, Haynes N D, Gauthier D J 2016 Chaos 26 094810Google Scholar

    [25]

    龚利爽, 侯二林, 刘海芳, 李凯凯, 王云才 2019 通信学报 40 2019048

    Gong L S, Hou E L, Liu H F, Li K K, Wang Y C 2019 J. Commun. 40 2019048

    [26]

    Rosin D 2014 Ph. D. Dissertation (Berlin: Duke University).

    [27]

    Xiang S Y, Pan W, Li N Q, Zhang L Y, Zhu H N 2013 Opt. Commun. 311 294Google Scholar

    [28]

    Toker D, Sommer F T, D'Esposito M 2020 Commun. Biol. 3 11Google Scholar

    [29]

    Ghil M, Mullhaupt A 1985 J. Stat. Phys. 41 125Google Scholar

  • [1] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [2] 李茹依, 王光义, 董玉姣, 周玮. 多频正弦混沌细胞神经网络及其复杂动力学特性. 物理学报, 2020, 69(24): 240501. doi: 10.7498/aps.69.20200725
    [3] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [4] 田中大, 李树江, 王艳红, 高宪文. 短期风速时间序列混沌特性分析及预测. 物理学报, 2015, 64(3): 030506. doi: 10.7498/aps.64.030506
    [5] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [6] 颜森林. 激光混沌并联同步及其在全光逻辑门中的应用研究. 物理学报, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [7] 王光义, 袁方. 级联混沌及其动力学特性研究. 物理学报, 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [8] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题. 物理学报, 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [9] 柴争义, 刘芳, 朱思峰. 混沌量子克隆优化求解认知无线网络决策引擎. 物理学报, 2012, 61(2): 028801. doi: 10.7498/aps.61.028801
    [10] 张檬, 吕翎, 吕娜, 范鑫. 结构与参量不确定的网络与网络之间的混沌同步. 物理学报, 2012, 61(22): 220508. doi: 10.7498/aps.61.220508
    [11] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [12] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制. 物理学报, 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [13] 潘欣裕, 赵鹤鸣. Logistic混沌系统的熵特性研究. 物理学报, 2012, 61(20): 200504. doi: 10.7498/aps.61.200504
    [14] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [15] 颜森林. 激光混沌耦合反馈光电及全光逻辑门研究. 物理学报, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [16] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [17] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计. 物理学报, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [18] 冯朝文, 蔡 理, 康 强. 基于单电子器件的混沌电路研究. 物理学报, 2008, 57(10): 6155-6161. doi: 10.7498/aps.57.6155
    [19] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [20] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
计量
  • 文章访问数:  4989
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2020-09-02
  • 上网日期:  2021-02-23
  • 刊出日期:  2021-03-05

/

返回文章
返回