搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制

安新磊 乔帅 张莉

引用本文:
Citation:

基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制

安新磊, 乔帅, 张莉

Dynamic response and control of neuros based on electromagnetic field theory

An Xin-Lei, Qiao Shuai, Zhang Li
PDF
HTML
导出引用
  • 钙、钾、钠等离子在细胞内连续泵送和传输时产生的时变电场不仅会影响神经元的放电活动, 而且会诱导时变磁场去进一步调节细胞内离子的传播. 根据麦克斯韦电磁场理论, 时变的电场和磁场在细胞内外的电生理环境中会相互激发而产生电磁场. 为了探究电磁场影响下的神经元放电节律转迁, 本文在三维Hindmarsh-Rose (HR)神经元模型的基础上, 引入磁通变量和电场变量, 建立了一个五维HR神经元模型(简称EMFN模型). 首先, 结合Matcont软件分析了EMFN模型的平衡点分布与全局分岔性质, 发现并分析了该模型存在的亚临界Hopf分岔、隐藏放电及其周期放电与静息态共存等现象. 其次, 利用双参数及单参数分岔、ISI 分岔和最大Lyapunov指数等工具进行数值仿真, 详细分析了EMFN模型存在的伴有混沌及无混沌的加周期分岔结构、混合模式放电和共存模式放电等现象, 同时揭示了电场和磁场强度影响其放电节律的转迁规律. 最后, 利用Washout控制器将EMFN模型的亚临界Hopf分岔转化为超临界Hopf分岔, 使其在分岔点附近的拓扑结构发生改变, 由此达到消除其隐藏放电的目的. 本文的研究结果证实了新建神经元模型具有丰富的放电节律, 将影响神经元的信息传递和编码, 为完善神经元模型, 揭示电磁场对生物神经系统的影响, 以及探求一些神经性疾病的致病机理提供了思路.
    The time-varying electric fields generated by continuously pumping and transmitting calcium, potassium and sodium ions in cells not only affect the discharge activity of neurons, but also induce time-varying magnetic fields to further regulate the fluctuation of ions. According to the Maxwell's electromagnetic field theory, time-varying electric field and magnetic field can stimulate each other in the electrophysiological environment inside and outside the cells to produce electromagnetic field. In order to explore the discharge rhythm transition of neurons under the influence of electromagnetic fields, a five-dimensional (5D) HR neuron model (EMFN model for short) is established by introducing magnetic flux variable and electric field variable into a three-dimensional (3D) Hindmarsh-Rose (HR) neuron model. Firstly, the equilibrium distribution and global bifurcation properties of EMFN model are analyzed by Matcont software, then the existence of subcritical Hopf bifurcation, hidden discharge, coexistence of periodic discharge and resting state are found and analyzed. Secondly, by using the tools of two-parameter and one-parameter bifurcation, ISI bifurcation and the maximum Lyapunov exponent for numerical simulation, the period-adding bifurcation with and without chaos, mixed mode discharge and coexistence mode discharge in the EMFN model are analyzed in detail. At the same time, the transition law of discharge rhythm with the influence of electric field and magnetic field intensity is revealed. Finally, the Washout controller is used to convert the subcritical Hopf bifurcation into supercritical Hopf bifurcation, so the topological structure of EMFN model near the bifurcation point is changed for eliminating the hidden discharge. The research results of this paper confirm that the novel neuron model has rich discharge rhythm, which will affect the information transmission and coding, and provide some ideas for improving the neuron models, revealing the influence of electromagnetic field on biological nervous system, and exploring the pathogenic mechanism of some neurological diseases.
      通信作者: 安新磊, anxin1983@163.com
    • 基金项目: 国家自然科学基金(批准号: 11962012)和中国博士后科学基金(批准号: 2018M633649XB)资助的课题
      Corresponding author: An Xin-Lei, anxin1983@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11962012) and the China Postdoctoral Science Foundation (Grant No. 2018M633649XB)
    [1]

    Varona P, Levi R, Arshavsky Y I, Rabinovich M I, Selverston A I 2004 Neurocomputing 58 549Google Scholar

    [2]

    Kato R, Yamanaka M, Kobayashi M 2018 J. Pharmacol. Sci. 136 172Google Scholar

    [3]

    Kayasandik C, Guo K H, Labate D 2019 J. Comput. Appl. Math. 349 482Google Scholar

    [4]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [5]

    Nielsen B F 2017 J. Math. Neurosci. 7 6Google Scholar

    [6]

    Shim Y, Husbands P 2018 Adapt. Behav. 26 165Google Scholar

    [7]

    Otsuka S, Omori T 2019 Neural Netw. 109 137Google Scholar

    [8]

    杨永霞, 李玉叶, 古华光 2020 物理学报 69 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 69 040501Google Scholar

    [9]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [10]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [11]

    Chay R T 1983 J. Phys. Chem. 87 2935Google Scholar

    [12]

    Hindmarsh J L, Rose R M 1984 P. Roy. Soc. B-Biol. Sci. 221 87Google Scholar

    [13]

    Izhikevich E M 2003 IEEE T. Neural Networ. 14 1569Google Scholar

    [14]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [15]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks Dallas, USA, August 4–9, 2013 p1

    [16]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [17]

    Barrio R, Lefranc M, Martínez M A, Serrano S 2015 Europhyslett. Lett. 109 20002Google Scholar

    [18]

    Yang S M, Wang J, Li S, Li H Y, Wei X L, Yu H T, Deng B 2015 Neurocomputing 177 274Google Scholar

    [19]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [20]

    Bao B C, Huang A H, Bao H 2018 Complexity 2018 1Google Scholar

    [21]

    Usha K, Subha P A 2019 Biosystems 5 1Google Scholar

    [22]

    Zhao Y, Sun X Y, Liu Yang, Kurths J 2018 Nonlinear Dyn. 93 1315Google Scholar

    [23]

    Pham V T, Jafari S, Vaidyanathan S, Vilos C, Wang X 2016 Sci. China Technol. Sci. 59 358Google Scholar

    [24]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [25]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

    [26]

    Wu F Q, Wang C N, Jin W Y Ma J 2017 Physica A 469 81Google Scholar

    [27]

    Kafraja M S, Parastesha F, Jafariba S 2020 Chaos, Soliton. Fract. 137 109782Google Scholar

    [28]

    安新磊, 张莉 2020 力学学报 52 1174Google Scholar

    An X L, Zhang L 2020 Chin. J. Theor. Appl. Mech. 52 1174Google Scholar

    [29]

    Ma J, Zhang G, Hayat T, Ren G D 2019 Nonlinear Dyn. 95 1585Google Scholar

    [30]

    Du L, Cao Z L, Lei Y M, Deng Z C 2019 Sci. China Technol. Sci. 62 1141Google Scholar

    [31]

    Wang C N, Tang J, Ma J 2019 Eur. Phys. J-Spec. Top. 228 1907Google Scholar

    [32]

    Oliveira L B, Filanovsky I M, Allam A, Fernandes J R 2008 IEEE International Symposium on Circuits and Systems Washington, USA, May 18–21, 2008 p2322

    [33]

    Xu Y M, Yao Z, Hobiny A, Aatef H, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [34]

    Ma J, Lv M, Zhou P, Xu Y, Hayat T 2017 Appl. Math. Comput. 307 321Google Scholar

    [35]

    Qin H L, Ma J, Ren G D, Zhou P 2018 Int J. Mod. Phys. B 32 1850298Google Scholar

    [36]

    An X L, Zhang L 2018 Nonlinear Dyn. 94 2995Google Scholar

    [37]

    Varshney V, Sabarathinam S, Prasad A 2018 Int. J. Bifurcat. Chaos 28 1850013Google Scholar

    [38]

    Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A 2016 Phys. Rep. 637 1Google Scholar

    [39]

    Gallas J A C 2015 Mod. Phys. Lett. B 29 1530018Google Scholar

    [40]

    Rosa L A S, Prebianca F, Hoff A, Manchein C, Albuquerque H A 2020 Int. J. Bifurcat. Chaos 30 118Google Scholar

    [41]

    Rao X B, Chu Y D, Chang Y X, Zhang J G, Tian Y P 2017 Nonlinear Dyn. 88 2347Google Scholar

    [42]

    Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Hinke M O, Wechselberger M 2012 SIAM Rev. 54 211Google Scholar

    [43]

    Kousaka T, Ogura Y, Shimizu K, Asahara H, Inaba N 2017 Physica D 27 48Google Scholar

    [44]

    Wang Q Q, Yu Y, Zhang Z D, Han X J 2019 J. Low Freq. Noise. V. A. 38 377Google Scholar

    [45]

    Rotstein H G 2014 Encyclopedia of Computational Neuroscience 2 1Google Scholar

    [46]

    孙常春, 陈仲堂, 侯祥林 2017 振动与冲击 36 220

    Sun C C, Chen Z T, Hou X L 2017 J. Vib. Shock 36 220

  • 图 1  EMFN模型(2)在$x \in [ - 20, 20]$时的吸引域

    Fig. 1.  The attractive basins of EMFN model (2) when $x \in [ - 20, 20]$.

    图 2  EMFN模型(2)的时间响应图和吸引子 (a) ${P_1}$附近的共存振荡; (b) 图(a)中蓝色放大图; (c)${P_1}$附近的周期2极限环; (d) ${P_2}$附近的共存振荡; (e) 图(d)中蓝色放大图; (f) ${P_2}$附近的周期2极限环; (g)${P_3}$附近的共存振荡; (h) 图(g)中蓝色放大图; (i)${P_3}$附近的周期1极限环

    Fig. 2.  Time responses and attractors of EMFN model (2): (a) Coexistence oscillation near ${P_1}$; (b) enlargement of the blue in (a); (c) limit cycle with period-2 near ${P_1}$; (d) coexistence oscillation near ${P_2}$; (e) enlargement of the blue in (d); (f) limit cycle with period-2 near ${P_2}$; (g) coexistence oscillation near ${P_3}$; (h) enlargement of the blue in (g); (i) limit cycle with period-1 near ${P_3}$.

    图 3  EMFN模型(2)的吸引域 (a), (c)和(e)是外界刺激电流分别取${I_{\rm{1}}}, \;{I_2}, \;{I_3}$x-y上的吸引域; (b), (d)和(f)是外界刺激电流分别取${I_{\rm{1}}}, \;{I_2}, \;{I_3}$x-ϕ上的吸引域

    Fig. 3.  The attractive basins of EMFN model (2): (a), (c) and (e) are the attractive basins in x-y plane under ${I_{\rm{1}}}, \;{I_2}, \;{I_3}$, respectively; (b), (d) and (f) are the attractive basins in x-ϕ plane under ${I_{\rm{1}}}, \;{I_2}, \;{I_3}$, respectively.

    图 4  EMFN模型(2)关于x的双参数分岔图 (a) $I$$b$对应的分岔图; (b) $I$$d$对应的分岔图; (c) $c$$d$对应的分岔图; (d) $I$$r$对应的分岔图; (e) $s$$r$对应的分岔图; (f) ${\chi _0}$$r$对应的分岔图; (g) $I$${k_1}$对应的分岔图; (h) $I$${\chi _0}$对应的分岔图; (i) $I$$s$对应的分岔图

    Fig. 4.  Two-parameter bifurcation diagrams of EMFN model (2) versus x: (a) Bifurcation diagram versus $I$ and $b$; (b) bifurcation diagram versus $I$ and $d$; (c) bifurcation diagram versus $c$ and $d$; (d) bifurcation diagram versus $I$ and $r$; (e) bifurcation diagram versus $s$ and $r$; (f) bifurcation diagram versus ${\chi _0}$ and $r$; (g) bifurcation diagram versus $I$ and ${k_1}$; (h) bifurcation diagram versus $I$ and ${\chi _0}$; (i) bifurcation diagram versus $I$ and $s$.

    图 5  关于$I$的ISI分岔图和单参分岔图 (a) ISI 分岔图; (b) 单参分岔图

    Fig. 5.  ISI bifurcation and one-parameter bifurcation versus I : (a) ISI bifurcation; (b) one-parameter bifurcation.

    图 6  对应于图5的最大 Lyapunov 指数图

    Fig. 6.  The largest Lyapunov diagram corresponding to Fig.5.

    图 7  EMFN模型(2)关于$I$$b$的时间响应图 (a) $I = 2.389, b = 3.239$时的周期3簇放电; (b) $I = 2.577, b = 3.173$时的周期4簇放电; (c) $I = 2.733, b = 3.134$时的周期5簇放电; (d) $I = 2.898, b = 3.093$时的周期6簇放电

    Fig. 7.  Time response diagram of EMFN model (2) versus $I$ and $b$: (a) Bursting with period-3 when $I = 2.389, b = 3.239$; (b) bursting with period-4 when $I = 2.577, b = 3.173$; (c) bursting with period-5 when $I = 2.733, b = 3.134$; (d) bursting with period-6 when $I = 2.898, b = 3.093$.

    图 8  EMFN模型(2)关于${k_0}$$d$的双参数分岔图

    Fig. 8.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to ${k_0}$ and $d$.

    图 9  EMFN模型(2)的时间响应图 (a) 周期2放电; (b) 周期${2^1}$放电; (c) 周期3放电; (d) 周期${3^1}$放电; (e) 周期4放电; (f) 周期${{\rm{4}}^{\rm{2}}}$放电

    Fig. 9.  Time response diagrams of EMFN model (2): (a) Discharge with period-2; (b) discharge with period-${2^1}$; (c) discharge with period-3; (d) discharge with period-${3^1}$; (e) discharge with period-4; (f) discharge with period-${4^2}$.

    图 10  EMFN模型(2)的共存吸引域 (a)$({k_0}, d) = (0.6587, 4.2596)$时关于x-ϕ的吸引域; (b)$({k_0}, d) = (0.6587, 4.2596)$时关于x-E的吸引域; (c)$({k_0}, d) = (0.7032, 4.3758)$时关于x-ϕ的吸引域; (d)$({k_0}, d) = (0.7032, 4.3758)$时关x-E于的吸引域; (e) $({k_0}, d) = (0.7{\rm{123}}, 4.{\rm{5032}})$时关于x-ϕ的吸引域; (f) $({k_0}, d) = (0.7{\rm{123}}, 4.{\rm{5032}})$时关于x-E的吸引域

    Fig. 10.  The coexisting attraction domains of EMFN model (2): (a) Attractive basins of x-ϕ plane when $({k_0}, d) = (0.6587, 4.2596)$; (b) attractive basins of x-E plane when $({k_0}, d) = (0.6587, 4.2596)$; (c) attractive basins of x-ϕ plane when $({k_0}, d) = (0.7032, 4.3758)$; (d) attractive basins of x-E plane when $({k_0}, d) = (0.7032, 4.3758)$; (e) attractive basins of x-ϕ plane when $({k_0}, d) = (0.7123, 4.5032)$; (f) attractive basins of x-E plane when $({k_0}, d) = (0.7123, 4.5032)$.

    图 11  关于${k_0}$的ISI分岔图和单参分岔图 (a) ISI 分岔图; (b) 单参分岔图

    Fig. 11.  ISI bifurcation and one-parameter bifurcation versus ${k_0}$: (a) ISI bifurcation; (b) one-parameter bifurcation.

    图 12  对应于图11的最大 Lyapunov 指数图

    Fig. 12.  The largest Lyapunov diagram corresponding to Fig.11.

    图 13  膜电压的发放数关于参数${k_0}$变化图

    Fig. 13.  The change of spike count of membrane voltage versus parameter ${k_0}$.

    图 14  EMFN模型(2)关于${k_0}$${k_1}$的双参数分岔图

    Fig. 14.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to ${k_0}$ and ${k_1}$.

    图 15  EMFN模型(2)的时间响应图 (a) 周期6放电; (b) 周期${6^3}$放电; (c) 周期7放电; (d) 周期${7^3}$放电; (e) 周期8放电; (f) 周期${8^3}$放电

    Fig. 15.  Time response diagrams of EMFN model (2): (a) Discharge with period-6; (b) discharge with period-${6^3}$; (c) discharge with period-7; (d) discharge with period-${7^3}$; (e) discharge with period-8; (f) discharge with period-${8^3}$.

    图 16  关于${k_0}$的 ISI 分岔图和单参分岔图

    Fig. 16.  ISI bifurcation and one-parameter bifurcation versus ${k_0}$.

    图 17  膜电压的发放数关于参数${k_0}$变化图

    Fig. 17.  The change of spike count of membrane voltage versus parameter ${k_0}$.

    图 18  EMFN模型(2)关于I${k_4}, \;{k_5}$的双参数分岔图

    Fig. 18.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to I and ${k_4}, \;{k_5}$.

    图 19  $I \in [3.1, \;4], \;{k_4} = 0.4556 I - 1.4122\;$时, EMFN模型(2)的 ISI 分岔图(a)和单参分岔图(b)

    Fig. 19.  (a) ISI bifurcation and (b) one-parameter bifurcation of EMFN model (2) when $I \in [3.1, \;4], \;{k_4} = 0.4556 I - 1.4122$.

    图 20  $I \in [2.9, \;3.7], \;{k_5} = - 0.9659 I + 3.7897$时, EMFN模型(2)的 ISI 分岔图(a)和单参分岔图(b)

    Fig. 20.  (a) ISI bifurcation and (b) one-parameter bifurcation of EMFN model (2) when $I \in [2.9, \;3.7], \;{k_5} = - 0.9659 I + 3.7897$.

    图 21  反馈增益$m$对受控系统(7)的放电影响  (a) 当$I = {I_2}$时, 受控系统(7)放电演化图; (b) 当$I = {I_3}$时, 受控系统(7)放电演化图

    Fig. 21.  The discharge influence of feedback gain $m$ to controlled system (7): (a) Discharge evolution of the controlled system (7) when $I = {I_2}$; (b) Discharge evolution of the controlled system (7) when $I = {I_3}$.

  • [1]

    Varona P, Levi R, Arshavsky Y I, Rabinovich M I, Selverston A I 2004 Neurocomputing 58 549Google Scholar

    [2]

    Kato R, Yamanaka M, Kobayashi M 2018 J. Pharmacol. Sci. 136 172Google Scholar

    [3]

    Kayasandik C, Guo K H, Labate D 2019 J. Comput. Appl. Math. 349 482Google Scholar

    [4]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [5]

    Nielsen B F 2017 J. Math. Neurosci. 7 6Google Scholar

    [6]

    Shim Y, Husbands P 2018 Adapt. Behav. 26 165Google Scholar

    [7]

    Otsuka S, Omori T 2019 Neural Netw. 109 137Google Scholar

    [8]

    杨永霞, 李玉叶, 古华光 2020 物理学报 69 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 69 040501Google Scholar

    [9]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [10]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [11]

    Chay R T 1983 J. Phys. Chem. 87 2935Google Scholar

    [12]

    Hindmarsh J L, Rose R M 1984 P. Roy. Soc. B-Biol. Sci. 221 87Google Scholar

    [13]

    Izhikevich E M 2003 IEEE T. Neural Networ. 14 1569Google Scholar

    [14]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [15]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks Dallas, USA, August 4–9, 2013 p1

    [16]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [17]

    Barrio R, Lefranc M, Martínez M A, Serrano S 2015 Europhyslett. Lett. 109 20002Google Scholar

    [18]

    Yang S M, Wang J, Li S, Li H Y, Wei X L, Yu H T, Deng B 2015 Neurocomputing 177 274Google Scholar

    [19]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [20]

    Bao B C, Huang A H, Bao H 2018 Complexity 2018 1Google Scholar

    [21]

    Usha K, Subha P A 2019 Biosystems 5 1Google Scholar

    [22]

    Zhao Y, Sun X Y, Liu Yang, Kurths J 2018 Nonlinear Dyn. 93 1315Google Scholar

    [23]

    Pham V T, Jafari S, Vaidyanathan S, Vilos C, Wang X 2016 Sci. China Technol. Sci. 59 358Google Scholar

    [24]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [25]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

    [26]

    Wu F Q, Wang C N, Jin W Y Ma J 2017 Physica A 469 81Google Scholar

    [27]

    Kafraja M S, Parastesha F, Jafariba S 2020 Chaos, Soliton. Fract. 137 109782Google Scholar

    [28]

    安新磊, 张莉 2020 力学学报 52 1174Google Scholar

    An X L, Zhang L 2020 Chin. J. Theor. Appl. Mech. 52 1174Google Scholar

    [29]

    Ma J, Zhang G, Hayat T, Ren G D 2019 Nonlinear Dyn. 95 1585Google Scholar

    [30]

    Du L, Cao Z L, Lei Y M, Deng Z C 2019 Sci. China Technol. Sci. 62 1141Google Scholar

    [31]

    Wang C N, Tang J, Ma J 2019 Eur. Phys. J-Spec. Top. 228 1907Google Scholar

    [32]

    Oliveira L B, Filanovsky I M, Allam A, Fernandes J R 2008 IEEE International Symposium on Circuits and Systems Washington, USA, May 18–21, 2008 p2322

    [33]

    Xu Y M, Yao Z, Hobiny A, Aatef H, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [34]

    Ma J, Lv M, Zhou P, Xu Y, Hayat T 2017 Appl. Math. Comput. 307 321Google Scholar

    [35]

    Qin H L, Ma J, Ren G D, Zhou P 2018 Int J. Mod. Phys. B 32 1850298Google Scholar

    [36]

    An X L, Zhang L 2018 Nonlinear Dyn. 94 2995Google Scholar

    [37]

    Varshney V, Sabarathinam S, Prasad A 2018 Int. J. Bifurcat. Chaos 28 1850013Google Scholar

    [38]

    Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A 2016 Phys. Rep. 637 1Google Scholar

    [39]

    Gallas J A C 2015 Mod. Phys. Lett. B 29 1530018Google Scholar

    [40]

    Rosa L A S, Prebianca F, Hoff A, Manchein C, Albuquerque H A 2020 Int. J. Bifurcat. Chaos 30 118Google Scholar

    [41]

    Rao X B, Chu Y D, Chang Y X, Zhang J G, Tian Y P 2017 Nonlinear Dyn. 88 2347Google Scholar

    [42]

    Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Hinke M O, Wechselberger M 2012 SIAM Rev. 54 211Google Scholar

    [43]

    Kousaka T, Ogura Y, Shimizu K, Asahara H, Inaba N 2017 Physica D 27 48Google Scholar

    [44]

    Wang Q Q, Yu Y, Zhang Z D, Han X J 2019 J. Low Freq. Noise. V. A. 38 377Google Scholar

    [45]

    Rotstein H G 2014 Encyclopedia of Computational Neuroscience 2 1Google Scholar

    [46]

    孙常春, 陈仲堂, 侯祥林 2017 振动与冲击 36 220

    Sun C C, Chen Z T, Hou X L 2017 J. Vib. Shock 36 220

  • [1] 陈宇威, 房涛, 范影乐, 佘青山. 通道阻塞与噪声对多室神经元响应状态影响的内在机理. 物理学报, 2024, 73(19): 190501. doi: 10.7498/aps.73.20240967
    [2] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [4] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [5] 王艳红, 王磊, 武京治. 神经微管振动产生纳米尺度内电磁场作用. 物理学报, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [6] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [7] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步. 物理学报, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [8] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [9] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [10] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子. 物理学报, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [11] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析. 物理学报, 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [12] 杨卓琴, 管亭亭, 甘春标, 张矫瑛. 双参数分岔平面内胰腺细胞的簇放电分析. 物理学报, 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [13] 邓善红, 高嵩, 李永平, 裴云昌, 林圣路. 平行电磁场中锂原子自电离的半经典分析. 物理学报, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [14] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析. 物理学报, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] 包伯成, 康祝圣, 许建平, 胡文. 含指数项广义平方映射的分岔和吸引子. 物理学报, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [16] 楼智美. 二维运动电荷的Mei对称性. 物理学报, 2005, 54(3): 1015-1017. doi: 10.7498/aps.54.1015
    [17] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [18] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
    [19] 张靖仪. 广义相对论中双荷场源的电磁场张量. 物理学报, 1999, 48(12): 2158-2161. doi: 10.7498/aps.48.2158
    [20] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅱ)——与正能模式交换,“回避交叉”和Hopf分岔. 物理学报, 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
计量
  • 文章访问数:  8152
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-16
  • 修回日期:  2020-09-16
  • 上网日期:  2021-02-26
  • 刊出日期:  2021-03-05

/

返回文章
返回