搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通道阻塞与噪声对多室神经元响应状态影响的内在机理

陈宇威 房涛 范影乐 佘青山

引用本文:
Citation:

通道阻塞与噪声对多室神经元响应状态影响的内在机理

陈宇威, 房涛, 范影乐, 佘青山
cstr: 32037.14.aps.73.20240967

Intrinsic mechanism of influence of channel blocking and noise on response state of multicompartmental neurons

Chen Yu-Wei, Fang Tao, Fan Ying-Le, She Qing-Shan
cstr: 32037.14.aps.73.20240967
PDF
HTML
导出引用
  • 多室神经元的精细结构能够同时捕捉时空特性, 具有丰富的响应和内在机理. 本研究基于Pinsky-Rinzel两室神经元模型, 提出多室神经元通道阻塞与噪声对神经元响应状态影响的分析方法. 首先, 钙离子(Ca2+)浓度影响神经递质释放的概率, 对多室神经元的节律性放电具有关键作用, 因此特别引入Ca2+通道阻塞, 构建带离子通道阻塞的多室神经元模型. 其次推导跃迁矩阵等核心参数构建Pinsky-Rinzel神经元Conductance噪声模型, 并与Subunit噪声模型对比. 最终, 通过单参数Hopf分岔解释各个离子通道阻塞下的动力学过程; 双参数分岔显示钾离子(K+)的Hopf节点随输入电流呈近似线性递增关系, 而钠离子(Na+)则近似为线性下降和指数上升两阶段; 通过变异系数等指标发现K+适度阻塞促进放电, Na+阻塞抑制放电, Ca2+阻塞总体上促进放电的特性. 另外, 在低于阈值信号刺激时, 两种噪声模型均产生随机共振, Conductance模型表现出更强的编码能力. 本研究揭示了离子通道阻塞与噪声在神经信号传递中的复杂机制, 为研究神经信息编码提供新的视角和工具.
    The fine structure of multi-compartment neurons can simultaneously capture both temporal and spatial characteristics, offering rich responses and intrinsic mechanisms. However, current studies of the effects of channel blockage and noise on neuronal response states are mainly limited to single-compartment neurons. This study introduces an analytical method to explore theintrinsic mechanism of channel blockage and noise effects on the response states of multi-compartment neurons, by using the smooth Pinsky-Rinzel two-compartment neuron model as a case study. Potassium, sodium, and calcium ion channel blockage coefficient are separately introduced to develop a smooth Pinsky-Rinzel neuron model with ion channel blockage. Methods such as single-parameter bifurcation analysis, double-parameter bifurcation analysis, coefficient of variation, and frequency characteristics analysis are utilized to examine the effects of various ion channel blockages on neuronal response states. Additionally, smooth Pinsky-Rinzel neuron Subunit noise model and conductance noise model are constructed to investigate their response characteristics by using interspike interval analysis and coefficient of variation indicators. Subthreshold stimulation is used to explore the presence of stochastic resonance phenomena. Single-parameter bifurcation analysis of the ion channel blockage model elucidates the dynamic processes of two torus bifurcations and limit point bifurcations in Pinsky-Rinzel neuron firing under potassium ion blocking. Double-parameter bifurcation analysis reveals a nearly linear increase in the Hopf bifurcation node of potassium ions with input current, whereas sodium ions exhibit a two-stage pattern of linear decline followed by exponential rise. The analysis of average firing frequency and coefficient of variation indicates that the moderate potassium channel blockage promotes firing, sodium channel blockage inhibits firing, and calcium channel blockage shows the complex characteristics but mainly promotes firing. Subthreshold stimulation of the channel noise model demonstrates the stochastic resonance phenomena in both models, accompanied by more intense chaotic firing, highlighting the positive role of noise in neural signal transmission. The interspike interval and coefficient of variation indicators show consistent variation levels for both noise models, with the conductance model displaying greater sensitivity to membrane area and stronger encoding capabilities. This study analyzes the general frequency characteristics of potassium and sodium ions in a multi-compartment neuron model through ion channel blocking model, providing special insights into the unique role of calcium ions. Further, the study explores stochastic resonance by using ion channel noise model, supporting the theory of noise-enhanced signal processing and offering new perspectives and tools for future studying complex information encoding in neural systems. By constructing an ion channel blockage model, the effects of potassium and sodium ions on the frequency characteristics of multi-compartment neurons are analyzed and the special influences of calcium ions are revealed. Using the ion channel noise model, the stochastic resonance is investigated, supporting the theory that the noise enhances signal processing. This research offers a new perspective and tool for studying the complex information encoding in neural systems.
      通信作者: 范影乐, fan@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62371172)和浙江省自然科学基金(批准号: LZ22F010003)资助的课题.
      Corresponding author: Fan Ying-Le, fan@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62371172) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ22F010003).
    [1]

    Xu Y, Jia Y, Ge M Y, Lu L L, Yang L J, Zhan X 2018 Neurocomputing 283 196Google Scholar

    [2]

    Zhou X Y, Xu Y, Wang G W, Jia Y 2020 Cogn. Neurodyn. 14 569Google Scholar

    [3]

    Zhu J L, Qiu H, Guo W L 2023 Biophys. J. 122 496Google Scholar

    [4]

    Yan H R, Yan J Q, Yu L C, Shao Y F 2024 Chin. Phys. B 33 058801Google Scholar

    [5]

    吴静, 潘春宇 2022 物理学报 71 048701Google Scholar

    Wu J, Pan C Y 2022 Acta Phys. Sin. 71 048701Google Scholar

    [6]

    Narahashi T, Moore J W 1968 J. Gen. Physiol. 51 93Google Scholar

    [7]

    王荣, 吴莹, 刘少宝 2013 物理学报 62 220504Google Scholar

    Wang R, Wu Y, Liu S B 2013 Acta Phys. Sin. 62 220504Google Scholar

    [8]

    刘少宝, 吴莹, 郝忠文, 李银军, 贾宁 2012 物理学报 61 020503Google Scholar

    Liu S B, Wu Y, Hao Z W, Li Y J, Jia N 2012 Acta Phys. Sin. 61 020503Google Scholar

    [9]

    Adair R K 2003 Proc. Natl. Acad. Sci. USA 100 12099Google Scholar

    [10]

    Xiao F L, Fu Z Y, Jia Y, Yang L J 2023 Chaos Soliton. Fract. 166 112969Google Scholar

    [11]

    梁艳美, 陆博, 古华光 2022 物理学报 71 230502Google Scholar

    Liang Y M, Lu B, Gu H G 2022 Acta Phys. Sin. 71 230502Google Scholar

    [12]

    Gong Y B, Hao Y H, Lin X, Wang L, Ma X G 2011 BioSystems 106 76Google Scholar

    [13]

    Longtin A 1993 J. Stat. Phys. 70 309Google Scholar

    [14]

    Faisal A A, Selen L P J, Wolpert D M 2008 Nat. Rev. Neurosci. 9 292Google Scholar

    [15]

    Ermentrout G B, Galán R F, Urban N N 2008 Trends Neurosci. 31 428Google Scholar

    [16]

    Chow C C, White J A 1996 Biophys. J. 71 3013Google Scholar

    [17]

    Mahapatra C, Samuilik I 2024 Mathematics 12 1149Google Scholar

    [18]

    van Rossum M C W, O’Brien B J, Smith R G 2003 J. Neurophysiol. 89 2406.Google Scholar

    [19]

    Chen Y, Yu L C, Qin S M 2008 Phys. Rev. E 78 051909Google Scholar

    [20]

    Stacey W C, Durand D M 2001 J. Neurophysiol. 86 1104Google Scholar

    [21]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M Y, Pei Q M, Yang L J 2019 Nonlinear Dyn. 95 1673Google Scholar

    [22]

    Sengupta B, Laughlin S B, Niven J E 2010 Phys. Rev. E 81 011918Google Scholar

    [23]

    Maisel B, Lindenberg K 2017 Phys. Rev. E 95 022414Google Scholar

    [24]

    Anderson D F, Ermentrout B, Thomas P J 2015 J. Comput. Neurosci. 38 67Google Scholar

    [25]

    Kilinc D, Demir A 2017 IEEE Trans. Biomed. Circuits Syst. 11 958Google Scholar

    [26]

    Fox R F, Lu Y 1994 Phys. Rev. E 49 3421Google Scholar

    [27]

    Goldwyn J H, Shea-Brown E 2011 PloS Comput. Biol. 7 e1002247Google Scholar

    [28]

    Goldwyn J H, Imennov N S, Famulare M, Shea-Brown E 2011 Phys. Rev. E 83 041908Google Scholar

    [29]

    Huang Y D, Rüdiger S, Shuai J W 2015 Phys. Biol. 12 061001Google Scholar

    [30]

    Cox D R 2017 The Theory of Stochastic Processes (New York: Routledge) pp1–408

    [31]

    Linaro D, Storace M, Giugliano M 2011 PloS Comput. Biol. 7 e1001102Google Scholar

    [32]

    Tuckerman L S, Barkley D 2000 Bifurcation Analysis for Timesteppers (New York: Springer) pp453–466

    [33]

    Guckenheimer J, Labouriau J S 1993 Bull. Math. Biol. 55 937Google Scholar

    [34]

    黎丽, 赵志国, 古华光 2022 物理学报 71 050504Google Scholar

    Li L, Zhao Z G, Gu H G 2022 Acta Phys. Sin. 71 050504Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Xie Y, Chen L N, Kang Y M, Aihara K 2008 Phys. Rev. E 77 061921Google Scholar

    [37]

    Erhardt A H, Mardal K A, Schreiner J E 2020 J. Comput. Neurosci. 48 229Google Scholar

    [38]

    Hu B, Xu M B, Zhu L Y, Lin J H, Wang Z Z, Wang D J, Zhang D M 2022 J. Theor. Biol. 536 110979Google Scholar

    [39]

    Wang Z Z, Hu B, Zhu L Y, Lin J H, Xu M B, Wang D J 2022 Commun. Nonlinear Sci. Numer. Simul. 114 106614Google Scholar

    [40]

    Ward M, Rhodes O 2022 Front. Neurosci. 16 881598Google Scholar

    [41]

    Stöckel A, Eliasmith C 2022 Neuromorph. Comput. Eng. 2 024011Google Scholar

    [42]

    Nomura M, Chen T Q, Tang C, Todo Y, Sun R, Li B, Tang Z 2024 Electronics 13 1367Google Scholar

    [43]

    Kühn S, Gallinat J 2014 Hum. Brain Mapp. 35 1129Google Scholar

    [44]

    Biagini G, D’Arcangelo G, Baldelli E, D’Antuono M, Tancredi V, Avoli M 2005 Neuromol. Med. 7 325Google Scholar

    [45]

    Sendrowski K, Sobaniec W 2013 Pharmacol. Rep. 65 555Google Scholar

    [46]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39Google Scholar

    [47]

    Taxidis J, Coombes S, Mason R, Owen M R 2012 Hippocampus 22 995Google Scholar

    [48]

    Kamondi A, Acsády L, Wang X J, Buzsáki G 1998 Hippocampus 8 244Google Scholar

    [49]

    Booth V, Bose A 2001 J. Neurophysiol. 85 2432Google Scholar

    [50]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363Google Scholar

    [51]

    Zhang S M, Yang Q, Ma C X, Wu J B, Li H Z, Tan K C 2024 Proceedings of the AAAI Conference on Artificial Intelligence Vancouver, Canada, February 20–27, 2024 p16838

    [52]

    Hahn P J, Durand D M 2001 J. Comput. Neurosci. 11 5Google Scholar

    [53]

    Atherton L A, Prince L Y, Tsaneva A K 2016 J. Comput. Neurosci. 41 91Google Scholar

    [54]

    Harnett M T, Makara J K, Spruston N, Kath W L, Magee J C 2012 Nature 491 599Google Scholar

    [55]

    Clarke S G, Scarnati M S, Paradiso K G 2016 J. Neurosci. 36 11559Google Scholar

    [56]

    Koudriavtsev A B, Jameson R F, Linert W 2001 The Law of Mass Action (Berlin: Springer Science & Business Media) pp1–441

    [57]

    Johnston D, Wu S M S 1994 Foundations of Cellular Neurophysiology (Cambridge, MA: MIT Press) pp1–710

  • 图 1  在$ {I_{{\text{Sapp}}}} = 0.3 {\text{ mA}} $时, 不同离子通道阻塞程度下PR神经元动作电位序列与放电频率 (a1) Na+通道阻塞下的动作电位序列; (a2)频率随Na+通道阻塞的变化; (b1) K+通道阻塞下PR神经元动作电位序列; (b2) 频率随K+通道阻塞的变化; (c1) Ca2+通道阻塞下PR神经元动作电位序列; (c2) 频率随Ca2+通道阻塞的变化, (a1), (b1), (c1)中红色实线代表阻塞系数为0.8, 绿色实线代表阻塞系数为0.6, 蓝色实线代表阻塞系数为0.4

    Fig. 1.  Action potential sequence and discharge frequency of PR neurons under different degree of ion channel obstruction, when $ {I_{{\text{Sapp}}}} = 0.3 {\text{ mA}} $: (a1) Sequence of action potentials induced by obstruction of Na+ ion channels; (a2) variation in frequency with obstruction of Na+ ion channels; (b1) action potential sequence of PR neurons blocked by K+ ion channels; (b2) variation in frequency with obstruction of K+ ion channels; Action potential sequence of PR neurons under obstruction of (c1) Ca2+ ion channels; (c2) variation in frequency with obstruction of Ca2+ ion channels. In (a1), (b1) and (c1), the red solid line represents the blocking coefficient of 0.8, the green solid line represents the blocking coefficient of 0.6, and the blue solid line represents the blocking coefficient of 0.4.

    图 2  $ {I_{{\text{Sapp}}}} = 5 {\text{ mA}} $时, 不同离子通道阻塞程度下PR神经元动作电位序列与放电频率 (a1) Na+通道阻塞下的动作电位序列; (a2)频率随Na+通道阻塞的变化; (b1) K+通道阻塞下PR神经元动作电位序列; (b2) 频率随K+通道阻塞的变化; (c1) Ca2+通道阻塞下PR神经元动作电位序列; (c2) 频率随Ca2+通道阻塞的变化

    Fig. 2.  Action potential sequence and discharge frequency of PR neurons under different degree of ion channel obstruction, when $ {I_{{\text{Sapp}}}} = 5 {\text{ mA}} $: (a1) Sequence of action potentials induced by obstruction of Na+ ion channels; (a2) variation in frequency with obstruction of Na+ ion channels; (b1) action potential sequence of PR neurons blocked by K+ ion channels; (b2) variation in frequency with obstruction of K+ ion channels; (c1) action potential sequence of PR neurons under obstruction of Ca2+ ion channels; (c2) variation in frequency with obstruction of Ca2+ ion channels.

    图 3  $ {I_{{\text{Sapp}}}} = 3 {\text{ mA}} $时, K+, Na+通道阻塞的分岔分析 (a) K+通道阻塞下的分岔分析结果; (b) Na+通道阻塞下的分岔分析结果, 图中HB表示Hopf分岔(Hopf bifurcation)节点, 表示系统中一个稳定的固定点变为不稳定的固定点, 同时在该点附近产生一个稳定的极限环; TR表示环面分岔(torus bifurcation), 系统中一个稳定的极限环进一步发生变化, 形成一个准周期轨道; LP表示极限点分岔(limit point bifurcation), 也称为鞍结分岔(fold bifurcation), 表示一个稳定和一个不稳定的点, 随着参数变化而碰撞并消失; 图中黑色表示稳定状态, 红色表示不稳定状态, 绿色代表周期状态, 蓝色代表非周期状态

    Fig. 3.  Bifurcation analysis of K+, Na+ ion channel obstruction when $ {I_{{\text{Sapp}}}} = 3 {\text{ mA}} $: (a) Results of a bifurcation analysis based on K+ ion channel obstruction; (b) results of a bifurcation analysis in the sense of Na+ ion channel obstruction. In the diagram, HB represents a Hopf bifurcation node, which indicates that a stable fixed point in the system becomes an unstable fixed point, while a stable limit cycle emerges near this point; TR represents a Torus bifurcation, where a stable limit cycle in the system undergoes further changes, leading to the formation of a quasi-periodic orbit; LP represents a limit point bifurcation, also known as a fold bifurcation, indicating a collision and disappearance of a stable and an unstable point as the parameter changes. In the diagram, black represents stable states, red represents unstable states, green represents periodic states, and blue represents non-periodic states.

    图 4  PR神经元频率特性与输入电流、离子通道阻塞的关系 (a1) 频率与Na+通道阻塞、输入电流的关系; (a2) CV与Na+通道阻塞的关系; (b1)频率与K+通道阻塞、输入电流的关系; (b2) CV与K+通道阻塞的关系; (c1)频率与Ca2+通道阻塞、输入电流的关系; (c2) CV与Ca2+通道阻塞的关系

    Fig. 4.  Relationship between frequency characteristics of PR neurons and input current and ion channel blocking: (a1) Relationship of frequency with Na+ ion channel obstruction and input current; (a2) relationship between CV and obstruction of Na+ ion channels; (b1) relationship of frequency with K+ ion channel obstruction and input current; (b2) relationship between CV and obstruction of K+ ion channels; (c1) relationship between frequency and Ca2+ ion channel obstruction and input current; (c2) relationship between CV and obstruction of Ca2+ ion channels.

    图 5  PR神经元双参数分岔分析结果 (a) PR神经元与Na+通道阻塞、输入电流的双参数分岔分析; (b) PR神经元与K+通道阻塞、输入电流的双参数分岔分析

    Fig. 5.  Results of two-parameter bifurcation analysis of neurons: (a) Two-parameter bifurcation analysis of PR neuron and Na+ ion channel obstruction and input current; (b) two-parameter bifurcation analysis of PR neuron and K+ ion channel obstruction and input current

    图 6  PR神经元Subunit噪声模型不同膜面积下的动作电位序列和离子通道参数变化 (a1) Area = 100, 低离子通道噪声水平下的动作电位; (a2) Area = 100, 低离子通道噪声水平下各个离子通道参数的变化; (b1) Area = 10, 中离子通道噪声水平下的动作电位; (b2) Area = 10, 中离子通道噪声水平下各个离子通道参数的变化; (c1) Area = 1, 高离子通道噪声水平下的动作电位; (c2) Area = 1, 高离子通道噪声水平下各个离子通道参数的变化

    Fig. 6.  Changes of action potential sequence and ion channel parameters under different membrane area of neuron Subunit noise model: (a1) Area = 100, action potential at low ion channel noise level; (a2) Area = 100, change of parameters of each ion channel at low ion channel noise level; (b1) Area = 10, action potential at medium ion channel noise level; (b2) Area = 10, change of parameters of each ion channel at medium ion channel noise level; (c1) Area = 1, action potential at high ion channel noise level; (c2) Area = 1, change of parameters of each ion channel at high ion channel noise level.

    图 7  PR神经元Subunit噪声模型在不同膜面积下的信噪比, 横坐标为膜面积, 纵坐标为信噪比, 输入电流为0.25 mA

    Fig. 7.  SNR of the PR neuron subunit noise model under different membrane areas, the horizontal axis represents the membrane area, and the vertical axis represents the signal-to-noise ratio, with an input current of 0.25 mA.

    图 8  PR神经元Conductance噪声模型不同膜面积下的动作电位序列和离子通道参数变化 (a1) Area = 10, 低离子通道噪声水平下的动作电位; (a2) Area = 10, 低离子通道噪声水平下各个离子通道参数的变化; (b1) Area = 1, 中离子通道噪声水平下的动作电位; (b2) Area = 1, 中离子通道噪声水平下各个离子通道参数的变化; (c1) Area = 0.1, 高离子通道噪声水平下的动作电位; (c2) Area = 0.1, 高离子通道噪声水平下各个离子通道参数的变化

    Fig. 8.  Changes of action potential sequence and ion channel parameters under different membrane area of neuron Conductance noise model: (a1) Area = 10, action potential at low ion channel noise level; (a2) Area = 10, parameters of each ion channel at low ion channel noise level; (b1) Area = 1, action potential at medium ion channel noise level; (b2) Area = 1, parameters of each ion channel at medium ion channel noise level; (c1) Area = 0.1, action potential at high ion channel noise level; (c2) Area = 0.1, parameters of each ion channel at high ion channel noise level.

    图 9  PR神经元Conductance噪声模型在不同膜面积下的信噪比, 横坐标为膜面积, 纵坐标为信噪比, 输入电流为0.25 mA

    Fig. 9.  SNR of the PR neuron Conductance noise model under different membrane areas, the horizontal axis represents the membrane area, and the vertical axis represents the signal-to-noise ratio, with an input current of 0.25 mA.

    图 10  PR神经元Subunit和Conductance噪声模型在不同膜面积下的动作电位序列栅格图 (a1) Area = 100, 低噪声水平下Subunit噪声引导的栅格图; (a2) Area = 10, 中噪声水平下Subunit噪声的栅格图; (a3) Area = 1, 高噪声水平下Subunit噪声引导的栅格图; (b1) Area = 100, 低噪声水平下Conductance噪声引导的栅格图; (b2) Area = 10, 中噪声水平下Conductance噪声引导的栅格图; (b3) Area = 1, 高噪声水平下Conductance噪声引导的栅格图; 图中横坐标代表时间, 纵坐标代表实验次数, 在本实验中我们进行了50次放电

    Fig. 10.  Raster plots of action potential sequences for PR neuron Subunits and Conductance noise model at different membrane areas: (a1) Raster plot driven by Subunit noise with Area = 100, under low noise level; (a2) raster plot driven by Subunit noise with Area = 10, under medium noise level; (a3) raster plot driven by Subunit noise with Area = 1, under high noise level; (b1) raster plot driven by Conductance noise with Area = 100, under low noise level; (b2) raster plot driven by Conductance noise with Area = 10, under medium noise level; (b3) raster plot driven by Conductance noise with Area = 1, under high noise level. In the figure, the horizontal coordinate represents the time, and the vertical coordinate represents the number of experiments. In this experiment, we carried out 50 discharges.

    图 11  PR神经元不同噪声模型和不同噪声程度下的ISI分布, 横坐标代表相邻脉冲之间的间隔(ISI), 纵坐标P表示ISI值落在横坐标对应值上的概率 (a) Subunit噪声模型; (b) Conductance噪声模型

    Fig. 11.  The ISI distribution of PR neurons under different noise models and different noise levels, the horizontal axis represents the interval between adjacent spikes (ISI), and the vertical axis represents the probability of the ISI values falling within the corresponding bins on the horizontal axis, denoted as P: (a) Subunit noise model; (b) Conductance noise model.

    表 1  PR神经元模型中参数取值

    Table 1.  Parameter value in PR neuron model.

    参数 取值 参数 取值
    ${C_{\text{m}}}$/(μF·cm–2) 3 $ {g_{\text{L}}} $/(μF·cm–2) 0.1
    $ {g_{{\text{Na}}}} $/(μF·cm–2) 30 $ {g_{\text{C}}} $/(μF·cm–2) 2.1
    $ {g_{{\text{KDR}}}} $/(μF·cm–2) 15 $ {V_{{\text{Na}}}} $/mV 60
    $ {g_{{\text{KCa}}}} $/(μF·cm–2) 15 $ {V_{\text{K}}} $/mV –75
    $ {g_{{\text{KAHP}}}} $/(μF·cm–2) 0.8 $ {V_{{\text{Ca}}}} $/mV 80
    $ {g_{{\text{Ca}}}} $/(μF·cm–2) 10 $ {V_{\text{L}}} $/mV –60
    下载: 导出CSV

    表 2  PR神经元本征噪声模型中系数取值

    Table 2.  Coefficient value of PR neuron intrinsic noise model.

    系数
    $\sigma _1^2$ $\dfrac{1}{N}{m^4}h(1 - h)$ $\dfrac{1}{N}n(1 - n)$ $\dfrac{2}{N}{s^3}(1 - s)$
    $\sigma _2^2$ $\dfrac{2}{N}{m^3}{h^2}(1 - m)$ $\dfrac{1}{N}{s^2}{(1 - s)^2}$
    $\sigma _3^2$ $\dfrac{1}{N}{m^2}{h^2}{(1 - m)^2}$
    $\sigma _4^2$ $\dfrac{2}{N}{m^3}h(1 - m)(1 - h)$
    $\sigma _5^2$ $\dfrac{1}{N}{m^2}h{(1 - m)^2}(1 - h)$
    下载: 导出CSV

    表 3  PR神经元本征噪声模型中时间常数取值

    Table 3.  Value of time constant in the intrinsic noise model of PR neuron.

    系数 系数
    ${\tau _1}$ ${\tau _h}$ ${\tau _n}$ ${\tau _s}$ ${\tau _4}$ $\dfrac{{{\tau _m}{\tau _h}}}{{{\tau _m} + {\tau _h}}}$
    ${\tau _2}$ ${\tau _m}$ $ {{{\tau _s}}}/{2}$ ${\tau _5}$ $\dfrac{{{\tau _m}{\tau _h}}}{{{\tau _m} + 2{\tau _h}}}$
    ${\tau _3}$ ${{{\tau _m}}}/{2}$
    下载: 导出CSV

    表 4  钾离子通道分岔分析的节点

    Table 4.  Nodes of bifurcation analysis of potassium ion channels.

    节点名称HBTR1LP1LP2TR2
    $ {x_{\text{K}}} $的值0.65070.67450.71460.70210.9104
    下载: 导出CSV

    表 5  PR神经元两种噪声模型下的信息熵

    Table 5.  Information entropy of PR neurons under two different noise models.

    噪声模型 膜面积/μm2 单位面积
    1 10 100 500 1000
    Subunit(信息熵)/bits 2.39 2.17 2.06 1.81 1.66 1.87
    Conductance(信息熵)/bits 3.31 3.18 3.16 3.12 2.96 3.13
    下载: 导出CSV
  • [1]

    Xu Y, Jia Y, Ge M Y, Lu L L, Yang L J, Zhan X 2018 Neurocomputing 283 196Google Scholar

    [2]

    Zhou X Y, Xu Y, Wang G W, Jia Y 2020 Cogn. Neurodyn. 14 569Google Scholar

    [3]

    Zhu J L, Qiu H, Guo W L 2023 Biophys. J. 122 496Google Scholar

    [4]

    Yan H R, Yan J Q, Yu L C, Shao Y F 2024 Chin. Phys. B 33 058801Google Scholar

    [5]

    吴静, 潘春宇 2022 物理学报 71 048701Google Scholar

    Wu J, Pan C Y 2022 Acta Phys. Sin. 71 048701Google Scholar

    [6]

    Narahashi T, Moore J W 1968 J. Gen. Physiol. 51 93Google Scholar

    [7]

    王荣, 吴莹, 刘少宝 2013 物理学报 62 220504Google Scholar

    Wang R, Wu Y, Liu S B 2013 Acta Phys. Sin. 62 220504Google Scholar

    [8]

    刘少宝, 吴莹, 郝忠文, 李银军, 贾宁 2012 物理学报 61 020503Google Scholar

    Liu S B, Wu Y, Hao Z W, Li Y J, Jia N 2012 Acta Phys. Sin. 61 020503Google Scholar

    [9]

    Adair R K 2003 Proc. Natl. Acad. Sci. USA 100 12099Google Scholar

    [10]

    Xiao F L, Fu Z Y, Jia Y, Yang L J 2023 Chaos Soliton. Fract. 166 112969Google Scholar

    [11]

    梁艳美, 陆博, 古华光 2022 物理学报 71 230502Google Scholar

    Liang Y M, Lu B, Gu H G 2022 Acta Phys. Sin. 71 230502Google Scholar

    [12]

    Gong Y B, Hao Y H, Lin X, Wang L, Ma X G 2011 BioSystems 106 76Google Scholar

    [13]

    Longtin A 1993 J. Stat. Phys. 70 309Google Scholar

    [14]

    Faisal A A, Selen L P J, Wolpert D M 2008 Nat. Rev. Neurosci. 9 292Google Scholar

    [15]

    Ermentrout G B, Galán R F, Urban N N 2008 Trends Neurosci. 31 428Google Scholar

    [16]

    Chow C C, White J A 1996 Biophys. J. 71 3013Google Scholar

    [17]

    Mahapatra C, Samuilik I 2024 Mathematics 12 1149Google Scholar

    [18]

    van Rossum M C W, O’Brien B J, Smith R G 2003 J. Neurophysiol. 89 2406.Google Scholar

    [19]

    Chen Y, Yu L C, Qin S M 2008 Phys. Rev. E 78 051909Google Scholar

    [20]

    Stacey W C, Durand D M 2001 J. Neurophysiol. 86 1104Google Scholar

    [21]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M Y, Pei Q M, Yang L J 2019 Nonlinear Dyn. 95 1673Google Scholar

    [22]

    Sengupta B, Laughlin S B, Niven J E 2010 Phys. Rev. E 81 011918Google Scholar

    [23]

    Maisel B, Lindenberg K 2017 Phys. Rev. E 95 022414Google Scholar

    [24]

    Anderson D F, Ermentrout B, Thomas P J 2015 J. Comput. Neurosci. 38 67Google Scholar

    [25]

    Kilinc D, Demir A 2017 IEEE Trans. Biomed. Circuits Syst. 11 958Google Scholar

    [26]

    Fox R F, Lu Y 1994 Phys. Rev. E 49 3421Google Scholar

    [27]

    Goldwyn J H, Shea-Brown E 2011 PloS Comput. Biol. 7 e1002247Google Scholar

    [28]

    Goldwyn J H, Imennov N S, Famulare M, Shea-Brown E 2011 Phys. Rev. E 83 041908Google Scholar

    [29]

    Huang Y D, Rüdiger S, Shuai J W 2015 Phys. Biol. 12 061001Google Scholar

    [30]

    Cox D R 2017 The Theory of Stochastic Processes (New York: Routledge) pp1–408

    [31]

    Linaro D, Storace M, Giugliano M 2011 PloS Comput. Biol. 7 e1001102Google Scholar

    [32]

    Tuckerman L S, Barkley D 2000 Bifurcation Analysis for Timesteppers (New York: Springer) pp453–466

    [33]

    Guckenheimer J, Labouriau J S 1993 Bull. Math. Biol. 55 937Google Scholar

    [34]

    黎丽, 赵志国, 古华光 2022 物理学报 71 050504Google Scholar

    Li L, Zhao Z G, Gu H G 2022 Acta Phys. Sin. 71 050504Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Xie Y, Chen L N, Kang Y M, Aihara K 2008 Phys. Rev. E 77 061921Google Scholar

    [37]

    Erhardt A H, Mardal K A, Schreiner J E 2020 J. Comput. Neurosci. 48 229Google Scholar

    [38]

    Hu B, Xu M B, Zhu L Y, Lin J H, Wang Z Z, Wang D J, Zhang D M 2022 J. Theor. Biol. 536 110979Google Scholar

    [39]

    Wang Z Z, Hu B, Zhu L Y, Lin J H, Xu M B, Wang D J 2022 Commun. Nonlinear Sci. Numer. Simul. 114 106614Google Scholar

    [40]

    Ward M, Rhodes O 2022 Front. Neurosci. 16 881598Google Scholar

    [41]

    Stöckel A, Eliasmith C 2022 Neuromorph. Comput. Eng. 2 024011Google Scholar

    [42]

    Nomura M, Chen T Q, Tang C, Todo Y, Sun R, Li B, Tang Z 2024 Electronics 13 1367Google Scholar

    [43]

    Kühn S, Gallinat J 2014 Hum. Brain Mapp. 35 1129Google Scholar

    [44]

    Biagini G, D’Arcangelo G, Baldelli E, D’Antuono M, Tancredi V, Avoli M 2005 Neuromol. Med. 7 325Google Scholar

    [45]

    Sendrowski K, Sobaniec W 2013 Pharmacol. Rep. 65 555Google Scholar

    [46]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39Google Scholar

    [47]

    Taxidis J, Coombes S, Mason R, Owen M R 2012 Hippocampus 22 995Google Scholar

    [48]

    Kamondi A, Acsády L, Wang X J, Buzsáki G 1998 Hippocampus 8 244Google Scholar

    [49]

    Booth V, Bose A 2001 J. Neurophysiol. 85 2432Google Scholar

    [50]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363Google Scholar

    [51]

    Zhang S M, Yang Q, Ma C X, Wu J B, Li H Z, Tan K C 2024 Proceedings of the AAAI Conference on Artificial Intelligence Vancouver, Canada, February 20–27, 2024 p16838

    [52]

    Hahn P J, Durand D M 2001 J. Comput. Neurosci. 11 5Google Scholar

    [53]

    Atherton L A, Prince L Y, Tsaneva A K 2016 J. Comput. Neurosci. 41 91Google Scholar

    [54]

    Harnett M T, Makara J K, Spruston N, Kath W L, Magee J C 2012 Nature 491 599Google Scholar

    [55]

    Clarke S G, Scarnati M S, Paradiso K G 2016 J. Neurosci. 36 11559Google Scholar

    [56]

    Koudriavtsev A B, Jameson R F, Linert W 2001 The Law of Mass Action (Berlin: Springer Science & Business Media) pp1–441

    [57]

    Johnston D, Wu S M S 1994 Foundations of Cellular Neurophysiology (Cambridge, MA: MIT Press) pp1–710

  • [1] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控. 物理学报, 2024, 73(22): 220301. doi: 10.7498/aps.73.20241171
    [2] 黎丽, 赵志国, 古华光. 兴奋性和抑制性自反馈压制靠近Hopf分岔的神经电活动比较. 物理学报, 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [3] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [4] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [5] 徐泠风, 李传东, 陈玲. 神经元模型对比分析. 物理学报, 2016, 65(24): 240701. doi: 10.7498/aps.65.240701
    [6] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析. 物理学报, 2016, 65(12): 120501. doi: 10.7498/aps.65.120501
    [7] 吴信谊, 马军, 谢振博. 离子通道的非均匀分布对环链神经元网络电活动的影响. 物理学报, 2013, 62(24): 240507. doi: 10.7498/aps.62.240507
    [8] 杨亚强, 王参军. 双色噪声激励下FHN神经元系统的稳态性质. 物理学报, 2012, 61(12): 120507. doi: 10.7498/aps.61.120507
    [9] 张静静, 靳艳飞. 非高斯噪声激励下FitzHugh-Nagumo神经元系统的随机共振. 物理学报, 2012, 61(13): 130502. doi: 10.7498/aps.61.130502
    [10] 刘少宝, 吴莹, 郝忠文, 李银军, 贾宁. 钠离子和钾离子通道噪声扰动对神经网络时空模式的影响. 物理学报, 2012, 61(2): 020503. doi: 10.7498/aps.61.020503
    [11] 宋艳丽. 简谐噪声激励下FitzHugh-Nagumo神经元的动力学行为. 物理学报, 2010, 59(4): 2334-2338. doi: 10.7498/aps.59.2334
    [12] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振. 物理学报, 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [13] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响. 物理学报, 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [14] 王朝庆, 徐 伟, 张娜敏, 李海泉. 色噪声激励下的FHN神经元系统. 物理学报, 2008, 57(2): 749-755. doi: 10.7498/aps.57.749
    [15] 苏 东, 唐昌建, 刘濮鲲. 束-离子通道电磁模式的边界效应分析. 物理学报, 2007, 56(5): 2802-2807. doi: 10.7498/aps.56.2802
    [16] 乔晓艳, 李 刚, 林 凌, 贺秉军. 弱激光对神经元钾离子通道特性影响的实验研究. 物理学报, 2007, 56(4): 2448-2455. doi: 10.7498/aps.56.2448
    [17] 唐荣荣. 超短超强脉冲激光产生的电离通道的存活性态分析. 物理学报, 2006, 55(2): 494-498. doi: 10.7498/aps.55.494
    [18] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [19] 董全力, 燕 飞, 张 杰, 金 展, 杨 辉, 郝作强, 陈正林, 李玉同, 魏志义, 盛政明. 大气中激光等离子体通道寿命的延长及测量分析. 物理学报, 2005, 54(7): 3247-3250. doi: 10.7498/aps.54.3247
    [20] 王建国, 仝晓民, 李家明. 铷原子初通道─末通道辐射跃迁矩阵元研究. 物理学报, 1996, 45(1): 13-19. doi: 10.7498/aps.45.13
计量
  • 文章访问数:  919
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-08-31
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回