搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通道阻塞与噪声对多室神经元响应状态影响的内在机理

陈宇威 房涛 范影乐 佘青山

引用本文:
Citation:

通道阻塞与噪声对多室神经元响应状态影响的内在机理

陈宇威, 房涛, 范影乐, 佘青山

The internal mechanism of the influence of channel blocking and noise on the response state of multicompartmental neurons

Chen Yu-Wei, Fang Tao, Fan Ying-Le, She Qing-Shan
PDF
导出引用
  • 多室神经元的精细结构能够同时捕捉时空特性,具有丰富的响应和内在机理。本研究基于Pinsky-Rinzel两室神经元模型,提出多室神经元通道阻塞与噪声对神经元响应状态影响的分析方法。首先,Ca2+离子浓度影响神经递质释放的概率,对多室神经元的节律性放电具有关键作用,因此特别引入Ca2+离子通道阻塞,构建带离子通道阻塞的多室神经元模型。其次推导跃迁矩阵等核心参数构建Pinsky-Rinzel神经元Conductance噪声模型,并与subunit噪声模型对比。最终,通过单参数Hopf分岔解释各个离子通道阻塞下的动力学过程;双参数分岔显示K+离子的Hopf节点随输入电流呈近似线性递增关系,而Na+离子则近似为线性下降和指数上升两阶段;通过变异系数等指标发现K+适度阻塞促进放电,Na+阻塞抑制放电,Ca2+阻塞总体上促进放电的特性。另外,在低于阈值信号刺激时,两种噪声模型均产生随机共振,Conductance模型表现出更强的编码能力。本研究揭示了离子通道阻塞与噪声在神经信号传递中的复杂机制,为研究神经信息编码提供新的视角和工具。
    The fine structure of multi-compartment neurons captures both temporal and spatial characteristics, offering rich responses and intrinsic mechanisms. However, current studies on the effects of channel blocking and noise on neuronal response states are predominantly limited to single-compartment neurons. This study introduces an analytical method to explore the internal mechanisms of channel blocking and noise effects on the response states of multi-compartment neurons, using the smooth Pinsky-Rinzel two-compartment neuron model as a case study. Potassium, sodium, and calcium ion channel blocking coefficients were separately introduced to develop a smooth Pinsky-Rinzel neuron model with ion channel blocking. Methods such as single-parameter bifurcation analysis, double-parameter bifurcation analysis, coefficient of variation, and frequency characteristics analysis were employed to examine the effects of various ion channel blockings on neuronal response states. Additionally, smooth Pinsky-Rinzel neuron subunit noise models and Conductance noise models were constructed to investigate their response characteristics using interspike interval analysis and coefficient of variation indicators. Subthreshold stimulation was used to explore the presence of stochastic resonance phenomena. Single-parameter bifurcation analysis of the ion channel blocking model elucidated the dynamic processes of two torus bifurcations and limit point bifurcations in Pinsky-Rinzel neuron firing under potassium ion blocking. Double-parameter bifurcation analysis revealed a near-linear increase in the Hopf bifurcation node of potassium ions with input current, whereas sodium ions exhibited a two-stage pattern of linear decline followed by exponential rise. Analysis of average firing frequency and coefficient of variation indicated that moderate potassium channel blocking promoted firing, sodium channel blocking inhibited firing, and calcium channel blocking showed complex characteristics but primarily promoted firing. Subthreshold stimulation of the channel noise model demonstrated stochastic resonance phenomena in both models, accompanied by more intense chaotic firing, highlighting the positive role of noise in neural signal transmission. Interspike interval and coefficient of variation indicators showed consistent variation levels for both noise models, with the conductance model displaying greater sensitivity to membrane area and stronger encoding capabilities. This study analyzed the general frequency characteristics of potassium and sodium ions on a multi-compartment neuron model through ion channel blocking models, providing particular insights into the unique effects of calcium ions. Further, the study explored stochastic resonance using ion channel noise models, supporting the theory of noise-enhanced signal processing and offering new perspectives and tools for future research on complex information encoding in neural systems. By constructing ion channel blocking models, the research analyzed the effects of potassium and sodium ions on the frequency characteristics of multi-compartment neurons and revealed the special influences of calcium ions. Using ion channel noise models, the study investigated stochastic resonance, supporting the theory that noise enhances signal processing. This research offers new perspectives and tools for studying complex information encoding in neural systems.
  • [1]

    Yan H R, Liu Q S, Zhang X L, Zhao X, Wang Y 2024 Chin. Phys. B 33 058801.

    [2]

    Wu J, Pan C Y 2022 Acta Phys. Sin. 71 048701(in Chinese) [吴静, 潘春宇 2022 物理学报 71 048701].

    [3]

    Xu Y, Jia Y, Ge M, Lu L, Yang L, Zhan X 2018 Neurocomputing 283 196.

    [4]

    Zhou X Y, Xu Y, Wang G W, Jia Y 2020 Cogn. Neurodyn. 14 569.

    [5]

    Zhu J L, Qiu H, Guo W L 2023 Biophys. J. 122 496.

    [6]

    Narahashi T, Moore J W 1968 J. Gen. Physiol. 51 93.

    [7]

    Gong Y B, Hao Y H, Lin X, Wang L, Ma X G 2011 BioSystems 106 76.

    [8]

    Longtin A 1993 J. Stat. Phys. 70 309.

    [9]

    Faisal A A, Selen L P J, Wolpert D M 2008 Nat. Rev. Neurosci. 9 292.

    [10]

    Ermentrout G B, Galán R F, Urban N N 2008 Trends Neurosci. 31 428.

    [11]

    Chow C C, White J A 1996 Biophys. J. 71 3013.

    [12]

    Mahapatra C, Samuilik I 2024 Mathematics 12 1149.

    [13]

    van Rossum M C W, O'Brien B J, Smith R G 2003 J. Neurophysiol. 89 2406.

    [14]

    Chen Y, Yu L C, Qin S M 2008 Phys. Rev. E 78 051909.

    [15]

    Stacey W C, Durand D M 2001 J. Neurophysiol. 86 1104.

    [16]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M Y, Pei Q M, Yang L J 2019 Nonlinear Dyn. 95 1673.

    [17]

    Sengupta B, Laughlin S B, Niven J E 2010 Phys. Rev. E 81 011918.

    [18]

    Maisel B, Lindenberg K 2017 Phys. Rev. E 95 022414.

    [19]

    Anderson D F, Ermentrout B, Thomas P J 2015 J. Comput. Neurosci. 38 67.

    [20]

    Kilinc D, Demir A 2017 IEEE Trans. Biomed. Circuits Syst. 11 958.

    [21]

    Fox R F, Lu Y 1994, Phys. Rev. E 49 3421.

    [22]

    Goldwyn J H, Shea-Brown E 2011 PloS Comput. Biol. 7 e1002247.

    [23]

    Linaro D, Storace M, Giugliano M 2011 PloS Comput. Biol. 7 e1001102.

    [24]

    Goldwyn J H, Imennov N S, Famulare M, Shea-Brown E 2011 Phys. Rev. E 83 041908.

    [25]

    Guckenheimer J, Labouriau J S 1993 Bull. Math. Biol. 55 937.

    [26]

    Xie Y, Chen L N, Kang Y M, Aihara K 2008 Phys. Rev. E 77 061921.

    [27]

    Erhardt A H, Mardal K A, Schreiner J E 2020 J. Comput. Neurosci. 48 229.

    [28]

    Hu B, Xu M B, Zhu L Y, Lin J H, Wang Z Z, Wang D J, Zhang D M 2022 J. Theor. Biol. 536 110979.

    [29]

    Wang Z Z, Liu Q S, Bi Y H, Zhang X L, Chen J Y, Li F J 2022 Commun. Nonlinear Sci. Numer. Simul. 114 106614.

    [30]

    Huang Y D, Rüdiger S, Shuai J W 2015 Phys. Biol. 12 061001.

    [31]

    Cox D R 2017 The Theory of Stochastic Processes (New York: Routledge)pp1-408.

    [32]

    Tuckerman L S, Barkley D 2000 Bifurcation Analysis for Timesteppers (New York: Springer)pp453-466.

    [33]

    Ward M, Rhodes O 2022 Front. Neurosci. 16 881598.

    [34]

    Stöckel A, Eliasmith C 2022 Neuromorph. Comput. Eng. 2 024011.

    [35]

    Nomura M, Chen T Q, Tang C, Todo Y, Sun R, Li B, Tang Z 2024 Electronics 13 1367.

    [36]

    Kühn S, Gallinat J 2014 Hum. Brain Mapp. 35 1129.

    [37]

    Biagini G, D’Arcangelo G, Baldelli E, D’Antuono M, Tancredi V, Avoli M 2005 Neuromol. Med. 7 325.

    [38]

    Sendrowski K, Sobaniec W 2013 Pharmacol. Rep. 65 555.

    [39]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39.

    [40]

    Taxidis J, Coombes S, Mason R, Owen M R 2012 Hippocampus 22 995.

    [41]

    Kamondi A, Acsády L, Wang X J, Buzsáki G 1998 Hippocampus 8 244.

    [42]

    Booth V, Bose A 2001 J. Neurophysiol. 85 2432.

    [43]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363.

    [44]

    Hahn P J, Durand D M 2001 J. Comput. Neurosci. 11 5.

    [45]

    Atherton L A, Prince L Y, Tsaneva A K 2016 J. Comput. Neurosci. 41 91.

    [46]

    Zhang S M, Yang Q, Ma C X, Wu J B, Li H Z, Tan K C 2024 Proceedings of the AAAI Conference on Artificial Intelligence Vancouver Canada, February 20-27, 2024 p16838.

    [47]

    Koudriavtsev A B, Jameson R F, Linert W 2011 The Law of Mass Action (Berlin: Springer Science & Business Media)pp1-441.

    [48]

    Johnston D, Wu S M S 1994 Foundations of Cellular Neurophysiology (Cambridge, MA: MIT Press)pp1-710.

    [49]

    Wang R, Wu Y, Liu S B 2013 Acta Phys. Sin. 62 220504(in Chinese) [王荣, 吴莹, 刘少宝 2013 物理学报 62 220504].

    [50]

    Clarke S G, Scarnati M S, Paradiso K G 2016 J. Neurosci. 36 11559.

    [51]

    Harnett M T, Makara J K, Spruston N, Kath W L, Magee J C 2012 Nature 491 599.

    [52]

    Liu S B, Wu Y, Hao Z W, Li Y J, Jia N 2012 Acta Phys. Sin. 61 020503(in Chinese) [刘少宝, 吴莹, 郝忠文, 李银军, 贾宁 2012 物理学报 61 020503].

    [53]

    Liang Y M, Lu B, Gu H G 2022 Acta Phys. Sin. 71 230502(in Chinese) [梁艳美, 陆博, 古华光 2022 物理学报 71 230502].

    [54]

    Adair R K 2003 Proc. Natl. Acad. Sci. USA 100 12099.

    [55]

    Xiao F L, Zhang J, Wang Z H, Li S, Liu M H, Chen Y J, Wang X R 2023 Chaos Solitons Fractals 166 112969.

    [56]

    Li L, Zhao Z G, Gu H G 2022 Acta Phys. Sin. 71 050504(in Chinese) [黎丽, 赵志国, 古华光 2022 物理学报 71 050504].

    [57]

    Guo Z H, Liu Q, Zhang X L, Wang Y, Zhao X 2023 Chin. Phys. B 32 038701.

  • [1] 黎丽, 赵志国, 古华光. 兴奋性和抑制性自反馈压制靠近Hopf分岔的神经电活动比较. 物理学报, doi: 10.7498/aps.71.20211829
    [2] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, doi: 10.7498/aps.70.20201171
    [3] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报, doi: 10.7498/aps.70.20201347
    [4] 徐泠风, 李传东, 陈玲. 神经元模型对比分析. 物理学报, doi: 10.7498/aps.65.240701
    [5] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析. 物理学报, doi: 10.7498/aps.65.120501
    [6] 吴信谊, 马军, 谢振博. 离子通道的非均匀分布对环链神经元网络电活动的影响. 物理学报, doi: 10.7498/aps.62.240507
    [7] 杨亚强, 王参军. 双色噪声激励下FHN神经元系统的稳态性质. 物理学报, doi: 10.7498/aps.61.120507
    [8] 张静静, 靳艳飞. 非高斯噪声激励下FitzHugh-Nagumo神经元系统的随机共振. 物理学报, doi: 10.7498/aps.61.130502
    [9] 刘少宝, 吴莹, 郝忠文, 李银军, 贾宁. 钠离子和钾离子通道噪声扰动对神经网络时空模式的影响. 物理学报, doi: 10.7498/aps.61.020503
    [10] 宋艳丽. 简谐噪声激励下FitzHugh-Nagumo神经元的动力学行为. 物理学报, doi: 10.7498/aps.59.2334
    [11] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振. 物理学报, doi: 10.7498/aps.59.699
    [12] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响. 物理学报, doi: 10.7498/aps.58.5070
    [13] 王朝庆, 徐 伟, 张娜敏, 李海泉. 色噪声激励下的FHN神经元系统. 物理学报, doi: 10.7498/aps.57.749
    [14] 苏 东, 唐昌建, 刘濮鲲. 束-离子通道电磁模式的边界效应分析. 物理学报, doi: 10.7498/aps.56.2802
    [15] 乔晓艳, 李 刚, 林 凌, 贺秉军. 弱激光对神经元钾离子通道特性影响的实验研究. 物理学报, doi: 10.7498/aps.56.2448
    [16] 唐荣荣. 超短超强脉冲激光产生的电离通道的存活性态分析. 物理学报, doi: 10.7498/aps.55.494
    [17] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, doi: 10.7498/aps.55.4020
    [18] 董全力, 燕 飞, 张 杰, 金 展, 杨 辉, 郝作强, 陈正林, 李玉同, 魏志义, 盛政明. 大气中激光等离子体通道寿命的延长及测量分析. 物理学报, doi: 10.7498/aps.54.3247
    [19] 王建国, 仝晓民, 李家明. 铷原子初通道─末通道辐射跃迁矩阵元研究. 物理学报, doi: 10.7498/aps.45.13
    [20] 赵钧. AlI原子2D吸收谱的多通道量子数亏损理论分析. 物理学报, doi: 10.7498/aps.31.28
计量
  • 文章访问数:  161
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-04

/

返回文章
返回