搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电解质浓度对胶体粒子表面有效电荷的影响

赵小安 徐升华 周宏伟 孙祉伟

引用本文:
Citation:

电解质浓度对胶体粒子表面有效电荷的影响

赵小安, 徐升华, 周宏伟, 孙祉伟

Effect of electrolyte concentration on effective surface charge of colloidal particles

Zhao Xiao-An, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei
PDF
HTML
导出引用
  • 胶体粒子的表面有效电荷是决定胶体性质的重要物理量, 但溶液环境(如电解质溶液浓度)是否影响其数值至今尚无统一认识, 近年来的一些研究工作给出了存在争议的不同结果和假设. 在直接实验测量方面, 由于电解质离子和胶体表面吸附离子的置换, 粒子表面基团的不完全电离和胶体粒子对离子吸附的共同作用, 使得对这类粒子在不同溶液环境下的表面有效电荷的测量和变化机理的认识极为困难. 针对该问题, 本文测定了羧基和磺酸基修饰的聚苯乙烯胶体颗粒在不同粒子浓度和HCl浓度下的电导率, 由于两种粒子与HCl电离产生的阳离子相同(均为H+), 可根据电导率-数密度法(迁移法)得到胶体颗粒表面有效电荷数. 通过实验结果分析, 明确了HCl浓度以及粒子数密度对胶体粒子表面电荷的影响规律以及表面电荷随HCl浓度增大的原因. 除此之外, 羧基修饰颗粒比磺酸基修饰颗粒的表面电荷随HCl浓度变化更快; 对于同一HCl浓度, 磺酸基修饰胶体表面电荷不受粒子数密度影响, 而羧基修饰胶体颗粒却与之相关. 基于粒子表面电荷的理论模型, 对这些问题都给出了相应的解释.
    The effective surface charge of colloid particles is an important parameter that determines the colloidal properties. However, it is still unclear whether the solvent environment (such as the electrolyte concentration) can affect the effective surface charge. Due to complicated effects relevant to the effective surface charge, such as the exchange of dissociable ions between the electrolyte and surface groups of polystyrene particles, the coupling effect of incomplete ionization of the surface groups of the particles and the adsorption of ions by colloidal particles, etc., it is rather difficult to accurately measure the surface charge and understand the mechanism of charge variation with solvent environment. To solve this problem, we measure the conductivities of polystyrene colloidal particles of carboxyl groups and sulfonic acid groups at various particle number densities and HCl concentrations. Since the cations generated from the two kinds of particles and HCl solution are all H+ cations, the surface charge can be obtained by the conductivity-number density method (migrant method), no matter whether the cation exchanges occur between ionized positive ions of the electrolyte and colloidal particles. Based on the experimental results, the influences of HCl concentration and particle number density on the surface charge of colloidal particles are detected, and the reasons of the influence are analyzed. It is found that the change of the surface charge of the particles of carboxyl group with HCl concentration is faster than that of sulfonic acid group with the HCl concentration. For the same electrolyte concentration, the effective surface charge of carboxyl modified colloidal particles is related to the particle number density, while the charge of sulfonic modified particles is not. Considering the fact that the sulfonic acid group and carboxyl group are strong and weak acid groups respectively, the ionization of H+ cations of the two different groups have profound influences on the cation replacement process, and affect the trend of the curve of the conductivity-particle number density. This effect further results in different change tendencies of effective surface charge with HCl concentration and particle number density. According to the theoretical model as described in this study, all experimental results are well explained. The mechanisms described in this article will be useful for stating the influencing factors of the surface effective charge, and the application of the effective charge to different phenomena relating to interparticle interactions with different parameters of solutions.
      通信作者: 徐升华, xush@imech.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11672295, 11572322)资助的课题
      Corresponding author: Xu Sheng-Hua, xush@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672295, 11572322)
    [1]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776Google Scholar

    [2]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340Google Scholar

    [3]

    Yi G R, Pine D J, Sacanna S 2013 J. Phys. Condens. Matter 25 193101Google Scholar

    [4]

    Frenkel D 2006 Science 314 768Google Scholar

    [5]

    Derjaguin B V 1992 Russ. Chem. Bull. 31 557

    [6]

    Derjaguin B V, Landau L D 1993 Prog. Surf. Sci. 43 30Google Scholar

    [7]

    Manuela V, Ingo K, Arno K 2013 Advances in Nanoparticles 2 287Google Scholar

    [8]

    Auer S, Frenkel D 2002 J. Phys. Condes. Matter 4 3053

    [9]

    Gu L Y, Xu S H, Sun Z W, Wang J T 2010 J. Colloid Interface Sci. 350 409Google Scholar

    [10]

    Jiménez-Ángeles F, M Lozada-Cassou 2008 J. Chem. Phys. 153 069901

    [11]

    Wette P, Schöpe H J, Palberg T 2002 J. Chem. Phys. 116 10981Google Scholar

    [12]

    Yamanaka J, Hayashi Y, Ise N, Yamaguchi T 1997 Phys. Rev. E 55 3028

    [13]

    Yamanaka J, Matsuoka H, Kitano H, Ise N 1990 J. Colloid Interface Sci. 134 92Google Scholar

    [14]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889Google Scholar

    [15]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E. 61 5493Google Scholar

    [16]

    王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰 2017 物理学报 66 066102Google Scholar

    Wang L W, Xu S H, Zhou H W, Sun Z W, OuYang W Z, Xu F 2017 Acta Phys. Sin. 66 066102Google Scholar

    [17]

    Heinen M, Palberg T, Löwen H 2014 J. Chem. Phys. 140 124904Google Scholar

    [18]

    Gutsche C, Keyser U F, Kegler K, Kremer F 2007 Phys. Rev. E 76 031403

    [19]

    Davis J A, James R O, Leckie J O 1978 J. Colloid Interface Sci. 83 1401

    [20]

    Barr S A, Panagiotopoulos A Z 2011 Langmuir 27 8761Google Scholar

    [21]

    Sumaru K, Yoshida H, Koga T, Ise N, Hashimoto T 1998 Phys. Rev. Lett. 80 5806Google Scholar

    [22]

    Delgado A, González-Caballero F, Hunter R J, Koopal L K, Lyklema J 2007 J. Colloid Interface Sci. 309 194Google Scholar

    [23]

    Zhou H W, Xu S H, Sun Z W, Du X, Liu L X 2011 Langmuir 27 7439Google Scholar

    [24]

    Sven H B, David G G 2001 J. Chem. Phys. 115 21218

    [25]

    Malek O K, Simon P, Derek Y, Chan C 2005 J. Chem. Phys. 122 2221

    [26]

    Guerrero-García G I, González-Tovar E, Lozada-Cassou M, de J Guevara-Rodríguez F 2005 J. Chem. Phys. 123 034703Google Scholar

    [27]

    Banchio A J, Nagele G 2008 J. Chem. Phys. 128 349

    [28]

    Gouy G 1910 J. Phys. 9 457

    [29]

    朱华玲, 李兵, 熊海灵 2009 物理化学学报 25 1004Google Scholar

    Zhu H L, Li B, Xiong H L 2009 Acta Phys.Chim. Sin. 25 1004Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental equipment.

    图 2  (a)磺酸基和(b)羧基修饰聚苯乙烯胶体的电导率-数密度关系曲线

    Fig. 2.  Conductivity of (a) sulfonic acid and (b) carboxyl-modified polystyrene as function of the number density.

    图 3  羧基修饰聚苯乙烯胶体颗粒的表面有效电荷

    Fig. 3.  Surface effect charge of carboxyl-modified polystyrene

    图 4  磺酸基(a)和羧基(b)修饰聚苯乙烯粒子示意图

    Fig. 4.  Schematic diagram of the particles with sulfonic acid groups (a) and carboxyl groups (b).

    图 5  磺酸基(a), 羧基(b)修饰聚苯乙烯粒子的表面有效电荷数

    Fig. 5.  The surface effective charge of sulfonic acid-modified (a) and carboxyl-modified (b) colloidal particles.

    图 6  磺酸基(a), 羧基(b)修饰聚苯乙烯胶体颗粒关于单个粒子引起的电导率变化量(σ–σ0)/n与单个粒子对应的电解质离子浓度NAC0/n关系曲线

    Fig. 6.  Conductivity contribution per particle (σ–σ0)/n as a function of the number concentration of small ions per particle NAC0/n performed on sulfonic acid-modified (a) and carboxyl-modified (b) polystyrene colloidal particles.

    表 1  实验中所使用的粒子参数

    Table 1.  Parameters of the particles.

    SampleSurface groupsDiameter/nmPolydispersityMobility/(10–8 m2·V–1·s–1)
    PS-1Carboxyl (—COOH)300 < 0.032.8
    PS-2Sulfonic acid (—SO3H)300 < 0.036.7
    下载: 导出CSV

    表 2  磺酸基修饰聚苯乙烯胶体颗粒的σ-n曲线斜率以及表面有效电荷数

    Table 2.  The slope of σ-n curve and the surface effective charge of sulfonic acid-modified polystyrene.

    C0/(10–6 mol·L–1)Slope/(10–20 S·m2)Ze
    2.082.21319734
    3.462.36341435
    5.532.47354022
    6.922.61377604
    下载: 导出CSV

    表 3  羧基修饰聚苯乙烯胶体颗粒表面有效电荷数

    Table 3.  The surface effective charge of carboxyl-modified polystyrene.

    C0/(10–6 mol·L–1)Ze
    2.084970
    3.465351
    5.535728
    6.926658
    下载: 导出CSV

    表 4  磺酸基修饰聚苯乙烯颗粒的有效电荷$ {Z}_{\mathrm{e}}^{*} $

    Table 4.  The surface effective charge $ {Z}_{\mathrm{e}}^{*} $ of sulfonic acid-modified polystyrene.

    C0/
    (10–6 mol·L–1)
    Slope/
    (10–26 S·m2)
    Intercept/
    (10–20 S·m2)
    $ {Z}_{\mathrm{e}}^{*} $
    2.086.942.16312297
    3.466.932.31333420
    5.536.912.50362225
    6.926.922.64382204
    下载: 导出CSV

    表 5  羧基修饰聚苯乙烯颗粒的有效电荷$ {Z}_{\mathrm{e}}^{*} $

    Table 5.  The surface effective charge of $ {Z}_{\mathrm{e}}^{*} $carboxyl-modified polystyrene.

    C0/
    (10–6 mol·L–1)
    Slope/
    (10–26 S·m2)
    Intercept/
    (10–22 S·m2)
    $ {Z}_{\mathrm{e}}^{*} $
    2.086.503.125199
    3.466.673.625766
    5.536.733.906208
    6.926.824.757397
    下载: 导出CSV
  • [1]

    Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P, Hone D 1984 J. Chem. Phys. 80 5776Google Scholar

    [2]

    Grosse C, Shilov V N 2000 J. Colloid Interf. Sci. 225 340Google Scholar

    [3]

    Yi G R, Pine D J, Sacanna S 2013 J. Phys. Condens. Matter 25 193101Google Scholar

    [4]

    Frenkel D 2006 Science 314 768Google Scholar

    [5]

    Derjaguin B V 1992 Russ. Chem. Bull. 31 557

    [6]

    Derjaguin B V, Landau L D 1993 Prog. Surf. Sci. 43 30Google Scholar

    [7]

    Manuela V, Ingo K, Arno K 2013 Advances in Nanoparticles 2 287Google Scholar

    [8]

    Auer S, Frenkel D 2002 J. Phys. Condes. Matter 4 3053

    [9]

    Gu L Y, Xu S H, Sun Z W, Wang J T 2010 J. Colloid Interface Sci. 350 409Google Scholar

    [10]

    Jiménez-Ángeles F, M Lozada-Cassou 2008 J. Chem. Phys. 153 069901

    [11]

    Wette P, Schöpe H J, Palberg T 2002 J. Chem. Phys. 116 10981Google Scholar

    [12]

    Yamanaka J, Hayashi Y, Ise N, Yamaguchi T 1997 Phys. Rev. E 55 3028

    [13]

    Yamanaka J, Matsuoka H, Kitano H, Ise N 1990 J. Colloid Interface Sci. 134 92Google Scholar

    [14]

    Gong Y K, Nakashima K, Xu R 2001 Langmuir 17 2889Google Scholar

    [15]

    Hessinger D, Evers M, Palberg T 2000 Phys. Rev. E. 61 5493Google Scholar

    [16]

    王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰 2017 物理学报 66 066102Google Scholar

    Wang L W, Xu S H, Zhou H W, Sun Z W, OuYang W Z, Xu F 2017 Acta Phys. Sin. 66 066102Google Scholar

    [17]

    Heinen M, Palberg T, Löwen H 2014 J. Chem. Phys. 140 124904Google Scholar

    [18]

    Gutsche C, Keyser U F, Kegler K, Kremer F 2007 Phys. Rev. E 76 031403

    [19]

    Davis J A, James R O, Leckie J O 1978 J. Colloid Interface Sci. 83 1401

    [20]

    Barr S A, Panagiotopoulos A Z 2011 Langmuir 27 8761Google Scholar

    [21]

    Sumaru K, Yoshida H, Koga T, Ise N, Hashimoto T 1998 Phys. Rev. Lett. 80 5806Google Scholar

    [22]

    Delgado A, González-Caballero F, Hunter R J, Koopal L K, Lyklema J 2007 J. Colloid Interface Sci. 309 194Google Scholar

    [23]

    Zhou H W, Xu S H, Sun Z W, Du X, Liu L X 2011 Langmuir 27 7439Google Scholar

    [24]

    Sven H B, David G G 2001 J. Chem. Phys. 115 21218

    [25]

    Malek O K, Simon P, Derek Y, Chan C 2005 J. Chem. Phys. 122 2221

    [26]

    Guerrero-García G I, González-Tovar E, Lozada-Cassou M, de J Guevara-Rodríguez F 2005 J. Chem. Phys. 123 034703Google Scholar

    [27]

    Banchio A J, Nagele G 2008 J. Chem. Phys. 128 349

    [28]

    Gouy G 1910 J. Phys. 9 457

    [29]

    朱华玲, 李兵, 熊海灵 2009 物理化学学报 25 1004Google Scholar

    Zhu H L, Li B, Xiong H L 2009 Acta Phys.Chim. Sin. 25 1004Google Scholar

  • [1] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性. 物理学报, 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [2] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响. 物理学报, 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [3] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [5] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论. 物理学报, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [6] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [7] 王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰. 带电胶体粒子弹性有效电荷测量的理论改进. 物理学报, 2017, 66(6): 066102. doi: 10.7498/aps.66.066102
    [8] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [9] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用. 物理学报, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [10] 钟诚, 陈智全, 杨伟国, 夏辉. 电解质对浓悬浮液中胶体颗粒扩散特性的影响. 物理学报, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [11] 顾凌云, 徐升华, 孙祉伟. 带电粒子形成胶体晶体的有效硬球模型判据的计算机模拟验证. 物理学报, 2011, 60(12): 126402. doi: 10.7498/aps.60.126402
    [12] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法. 物理学报, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [13] 范 瑾, 李剑锋, 张红东, 杨玉良. 半刚性聚电解质链与带相反电荷颗粒复合体系的动力学模拟. 物理学报, 2007, 56(12): 7230-7235. doi: 10.7498/aps.56.7230
    [14] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究. 物理学报, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [15] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [16] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [17] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用. 物理学报, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [18] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [19] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数. 物理学报, 1993, 42(4): 631-639. doi: 10.7498/aps.42.631
    [20] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, 1988, 37(8): 1236-1243. doi: 10.7498/aps.37.1236
计量
  • 文章访问数:  7041
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-11-12
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回