搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小斜率近似的深海海面混响

殷丽君 吴金荣 侯倩男 马力

引用本文:
Citation:

基于小斜率近似的深海海面混响

殷丽君, 吴金荣, 侯倩男, 马力

Surface reverberation based on small-slope approximation in deep water

Yin Li-Jun, Wu Jin-Rong, Hou Qian-Nan, Ma Li
PDF
HTML
导出引用
  • 收发设备在海面附近的深海混响实验中, 多途时延使得最先到达水听器的为海面混响信号, 且不受海底散射声场的干扰. 本文利用射线理论描述深海声传播的格林函数, 采用粗糙界面一阶小斜率近似方法描述全角度海面散射, 给出海面混响声场的表达式. 同时考虑了海面表层气泡散射的贡献, 获得了海面混响理论. 通过数值仿真数据和深海实验数据的比较对海面混响模型进行验证, 分析了不同接收深度、频率下的海面混响强度衰减趋势. 结果表明: 低海况条件下, 低频海面混响由粗糙界面散射主导, 气泡散射可以忽略, 随频率升高, 气泡散射对海面混响的贡献逐渐增大, 海面附近收发深度的小幅变化对混响衰减曲线的影响不明显. 基于该模型提出一种反演海面粗糙界面谱参数的方法, 数值计算结果验证了该模型能够在风速已知的前提下, 通过海面混响数据提取海面粗糙界面谱参数.
    For the reverberation experiments with a near surface source or receiver, surface reverberation arriving first after source signal is not influenced by bottom reverberation due to time-delay difference of acoustic multipath in deep water. A surface reverberation model is proposed in the paper. The Green’s function of sound propagation is described by the ray theory, and first-order small-slope approximation is employed for the surface scattering from full angle. The effect of bubbles scattering is also considered to get the surface reverberation theory. The reverberation model is verified by comparing the simulation results with the experimental data. The measured data show that the decaying rate of surface reverberation intensity decreases with the frequency increasing. Numerical calculation demonstrates that the frequency dependence is caused by the positive correlation between scattering strength and frequency, and the surface reverberation at low frequency for low sea state is dominated by the scattering from rough air-sea interface. Moreover, the reverberation data from experiment show that the surface reverberation is not sensitive to the change of receiving depth. A method of inversion for the two surface-wave spectral parameters in the model is achieved based on the reverberation model. The inversion results verify that the spectral parameters of rough surface can be obtained from surface reverberation data on the premise of the wind speed parameter. As a result, the scattering properties of rough interface will be obtained.
      通信作者: 吴金荣, wujinrong@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11774375, 11974375)资助的课题
      Corresponding author: Wu Jin-Rong, wujinrong@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774375, 11974375).
    [1]

    Bergmann P G, Spitzer L 1946 Summary Tech. Rep. 8 6

    [2]

    Chapman R P, Harris J H 1962 J. Acoust. Soc. Am. 34 1592Google Scholar

    [3]

    Bachmann W 1973 J. Acoust. Soc. Am. 54 712Google Scholar

    [4]

    Crowther P A 1980 Collection in Cavitation and Inhomogeneities is Underwater Acoustics (Berlin: Springer-Verlag) p194

    [5]

    Niitzel B, Herwig H, Monti J M, Koenigs P D 1987 The Influence of Surface Roughness and Bubbles on Sea Surface Acoustic Backscattering (New London: NUSC Tech. Rep. 7955, Naval Underwater Systems Center) pp1−61

    [6]

    McDaniel S T 1988 Collection in Sea Surface Sound (Dordrecht: Springer) p225

    [7]

    McDaniel S T 1993 J. Acoust. Soc. Am. 94 1551Google Scholar

    [8]

    McDaniel S T 1993 J. Acoust. Soc. Am. 94 1905Google Scholar

    [9]

    Richter R M 1964 J. Acoust. Soc. Am. 36 864Google Scholar

    [10]

    Ogden P M, Erskine F T 1994 J. Acoust. Soc. Am. 96 2908Google Scholar

    [11]

    Ogden P M, Erskine F T 1994 J. Acoust. Soc. Am. 95 746Google Scholar

    [12]

    Schneider H G 1993 J. Acoust. Soc. Am. 93 770Google Scholar

    [13]

    Ellis D D 1995 J. Acoust. Soc. Am. 97 2804Google Scholar

    [14]

    Bass F G, Fuks I M 1978 Wave Scattering from Statistically Rough Surfaces (New York: Pergamon Press) p103

    [15]

    Voronovich A G 1986 Progress in Underwater Acoustics Plenum, Halifax, Nova Scotia, Canada, July 16−18, 1986 p25

    [16]

    Dashen R, Henyey F S, Wurmser D 1990 J. Acoust. Soc. Am. 88 310Google Scholar

    [17]

    Maue A W 1949 Z. Phys. 126 601Google Scholar

    [18]

    Kampen N G 1981 Stochastic Processes in Physics and Chemistry (Amsterdam: North Holland) p66

    [19]

    Gauss R G, Gragg R F, Wurmser D, Fialkowski J M 2002 Nasa Sti/recon Technical Report 8

    [20]

    Jackson D R, Winebrenner D P, Ishimaru A 1986 J. Acoust. Soc. Am. 79 1410Google Scholar

    [21]

    Gauss R C, Fialkowski J M 2000 Proceedings of the Fifth European Conference on Underwater Acoustics, Lyon, France, July 10−13, 2000 1165

  • 图 1  实测环境数据 (a)声速剖面; (b)平均风速

    Fig. 1.  Data of experimental environment: (a) Sound speed profile; (b) average wind speed.

    图 2  实测海面混响强度衰减趋势 (a) 接收深度31 m; (b) 接收深度86 m

    Fig. 2.  Decaying trend of surface reverberation intensity measured in deep water: (a) Receiving at depth of 31 m; (b) receiving at depth of 86 m.

    图 3  声线轨迹示意图 (a)声源深度31 m; (b)声源深度86 m

    Fig. 3.  Geometry of ray trace: (a) Receiving at depth of 31 m; (b) receiving at depth of 86 m.

    图 4  实测混响数据比对 (a)不同接收深度间比较; (b)不同频率间比较

    Fig. 4.  Comparison of reverberation data measured in deep water: (a) Comparison between different depths; (b) comparison among different frequencies.

    图 5  深海海面混响示意图

    Fig. 5.  Scenario of surface reverberation in deep water.

    图 6  不同频率下界面反向散射强度随掠射角变化关系 (a)气泡和界面散射强度; (b)界面和总散射强度

    Fig. 6.  Grazing-angle dependence of backscattering strength at different frequency: (a) Scattering strength of bubble and interface; (b) scattering strength of interface and the superposition of bubble and interface.

    图 7  海面混响强度拟合 (a) 接收深度31 m; (b) 接收深度86 m

    Fig. 7.  Comparison between modeling simulation and measured data: (a) Receiving at depth of 31 m; (b) receiving at depth of 86 m.

    图 8  掠射角随时间的变化关系

    Fig. 8.  Relationship between grazing angles and time.

    图 9  海面散射强度与时间关系反演结果 (a) 接收深度31 m; (b) 接收深度86 m

    Fig. 9.  Inversion results of the time dependence of surface scattering strength: (a) Receiving at depth of 31 m; (b) receiving at depth of 86 m.

    图 10  海面粗糙界面谱参数反演结果 (a) 接收深度31 m; (b) 接收深度86 m

    Fig. 10.  Inversion results of the parameters of rough interface: (a) Receiving at depth of 31 m; (b) receiving at depth of 86 m.

  • [1]

    Bergmann P G, Spitzer L 1946 Summary Tech. Rep. 8 6

    [2]

    Chapman R P, Harris J H 1962 J. Acoust. Soc. Am. 34 1592Google Scholar

    [3]

    Bachmann W 1973 J. Acoust. Soc. Am. 54 712Google Scholar

    [4]

    Crowther P A 1980 Collection in Cavitation and Inhomogeneities is Underwater Acoustics (Berlin: Springer-Verlag) p194

    [5]

    Niitzel B, Herwig H, Monti J M, Koenigs P D 1987 The Influence of Surface Roughness and Bubbles on Sea Surface Acoustic Backscattering (New London: NUSC Tech. Rep. 7955, Naval Underwater Systems Center) pp1−61

    [6]

    McDaniel S T 1988 Collection in Sea Surface Sound (Dordrecht: Springer) p225

    [7]

    McDaniel S T 1993 J. Acoust. Soc. Am. 94 1551Google Scholar

    [8]

    McDaniel S T 1993 J. Acoust. Soc. Am. 94 1905Google Scholar

    [9]

    Richter R M 1964 J. Acoust. Soc. Am. 36 864Google Scholar

    [10]

    Ogden P M, Erskine F T 1994 J. Acoust. Soc. Am. 96 2908Google Scholar

    [11]

    Ogden P M, Erskine F T 1994 J. Acoust. Soc. Am. 95 746Google Scholar

    [12]

    Schneider H G 1993 J. Acoust. Soc. Am. 93 770Google Scholar

    [13]

    Ellis D D 1995 J. Acoust. Soc. Am. 97 2804Google Scholar

    [14]

    Bass F G, Fuks I M 1978 Wave Scattering from Statistically Rough Surfaces (New York: Pergamon Press) p103

    [15]

    Voronovich A G 1986 Progress in Underwater Acoustics Plenum, Halifax, Nova Scotia, Canada, July 16−18, 1986 p25

    [16]

    Dashen R, Henyey F S, Wurmser D 1990 J. Acoust. Soc. Am. 88 310Google Scholar

    [17]

    Maue A W 1949 Z. Phys. 126 601Google Scholar

    [18]

    Kampen N G 1981 Stochastic Processes in Physics and Chemistry (Amsterdam: North Holland) p66

    [19]

    Gauss R G, Gragg R F, Wurmser D, Fialkowski J M 2002 Nasa Sti/recon Technical Report 8

    [20]

    Jackson D R, Winebrenner D P, Ishimaru A 1986 J. Acoust. Soc. Am. 79 1410Google Scholar

    [21]

    Gauss R C, Fialkowski J M 2000 Proceedings of the Fifth European Conference on Underwater Acoustics, Lyon, France, July 10−13, 2000 1165

  • [1] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [3] 刘胜兴, 李整林. 海面冰层对声波的反射和散射特性. 物理学报, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [4] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究. 物理学报, 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [5] 王琛, 安红海, 乔秀梅, 方智恒, 熊俊, 王伟, 孙今人, 郑无敌. 软X射线激光汤姆逊散射实验尝试. 物理学报, 2013, 62(13): 135203. doi: 10.7498/aps.62.135203
    [6] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演. 物理学报, 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [7] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究. 物理学报, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [8] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, 2009, 58(9): 6158-6166. doi: 10.7498/aps.58.6158
    [9] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [10] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [11] 杨俊岭, 郭立新, 万建伟. 基于未充分发展海谱的分形海面模型及其电磁散射研究. 物理学报, 2007, 56(4): 2106-2114. doi: 10.7498/aps.56.2106
    [12] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [13] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [14] 赵 辉, 黄 健, 蓝 海, 董宝中. 大鼠骨质疏松模型的小角x射线散射研究. 物理学报, 2004, 53(6): 2005-2008. doi: 10.7498/aps.53.2005
    [15] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究. 物理学报, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
    [16] 李志宏, 孙继红, 赵军平, 吴东, 孙予罕, 柳义, 生文君, 董宝中. 用小角X射线散射法研究溶胶结构. 物理学报, 2000, 49(4): 775-780. doi: 10.7498/aps.49.775
    [17] 游铭长, 张舒安. 海面漫反射率近似表示式的解析推导. 物理学报, 1994, 43(4): 683-688. doi: 10.7498/aps.43.683
    [18] 姜晓明, 吴自勤, 钱临照. γ射线辐照LiF晶体中辐照缺陷的X射线黄昆漫散射实验测量. 物理学报, 1989, 38(4): 529-533. doi: 10.7498/aps.38.529
    [19] 方渡飞, 唐孝威, 杨保忠, 李耀清. 较小动量转移下γ射线的相干散射. 物理学报, 1987, 36(5): 640-645. doi: 10.7498/aps.36.640
    [20] 尚尔昌, 张仁和. 浅海远程混响理论. 物理学报, 1975, 24(4): 260-267. doi: 10.7498/aps.24.260
计量
  • 文章访问数:  3978
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-04-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回