搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水团簇掺杂实验方法研究进展

黄传甫

引用本文:
Citation:

水团簇掺杂实验方法研究进展

黄传甫

Experimental methodology of water cluster doping

Huang Chuan-Fu
PDF
HTML
导出引用
  • 水是空间中最常见的分子之一, 也是地球上生物赖以生存的最有价值的物质资源. 水团簇的研究对于水资源的实际利用具有重要作用, 同时水团簇还可作为理想的水微观模型, 可拓展物理化学基础科学的发展, 并为溶剂和溶质之间尺寸依赖的解离性质及相互作用等研究提供借鉴. 另外一方面, 气相酸性混合水团簇近年来引起了学界高度重视, 如实验及理论工作一直在寻求纯水团簇和掺杂酸性分子水团簇的最小能量结构等. 简而言之, 掺杂外来分子或原子可极大地扩展了水团簇科学研究范围. 目前在实验上掺杂水团簇的方法有多种, 本文对此做出简要的综述, 比较各种掺杂方法的特点, 以方便研究者在实验上更有效地应用水团簇掺杂实验方法.
    Water is one of the most common molecules in space and is also most valuable substance resource for living activities on earth. Studying water clusters plays an important role in actually utilizing water resources. Meanwhile, water clusters can be used as an ideal water microscopic model, which can expand the development of physical and chemical basic science, for example, it can provide the reference for investigating the size-dependent dissociation properties and interactions between solvents and solutes. On the other hand, the gas-phase mixed acidic water clusters have aroused great interest in recent years. For instance, One has been seeking for the smallest energy structure of pure water clusters and doped acidic molecular water clusters, experimentally and theoretically. In short, doping with foreign molecules or atoms can significantly enlarge the scope of scientific research on water clusters. Currently, there are many approaches to doping water clusters experimentally. This review briefly summarizes these means and compares the characteristics of various doping methods to help researchers to apply water cluster doping experiments more effectively.
      通信作者: 黄传甫, chuanfuh@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004424, 11847012)资助的课题
      Corresponding author: Huang Chuan-Fu, chuanfuh@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004424, 11847012)
    [1]

    de Heer W A 1993 Rev. Mod. Phys. 65 611Google Scholar

    [2]

    Brack M 1993 Rev. Mod. Phys. 65 677Google Scholar

    [3]

    王广厚 2003 团簇物理学 (上海: 科学出版社) 第1−3页

    Wang G H 2003 Cluster Physics (Shanghai: Scientific and Technical Publishers) pp1−3 (in Chinese)

    [4]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371Google Scholar

    [5]

    Johnston R L 2002 Atomic and Molecular Clusters (London: CRC Press) pp2, 3

    [6]

    Kolb C E, Jayne J T, Worsnop D R, Molina M J, Meads R F, Viggiano A V 1994 J. Am. Chem. Soc. 116 10314Google Scholar

    [7]

    Carlon H R 1979 Infrared Phys. 19 549Google Scholar

    [8]

    Carlon H R 1984 J. Phys. D 17 1221Google Scholar

    [9]

    Pugliano N, Saykally R J 1992 Science 257 1937Google Scholar

    [10]

    Saykally R J, Blake G A 1993 Science 259 1570Google Scholar

    [11]

    Saykally R J, Liu K, Cruzan J D 1996 Science 271 929Google Scholar

    [12]

    Cruzan J D, Braly L B, Liu K, Brown M G, Loeser J G, Saykally R J 1996 Science 271 59Google Scholar

    [13]

    Liu K, Brown M G, Cruzan J D, Saykally R J 1996 Science 271 62Google Scholar

    [14]

    Zho C C, Vlček V, Neuhauser D, Schwartz B J 2018 J. Phys. Chem. Lett. 9 5173Google Scholar

    [15]

    Zhang X W, Jie J L, Song D, Su H M 2020 J. Phys. Chem. A 124 6076Google Scholar

    [16]

    Miyazaki M, Naito A, Ikeda T, Klyne J, Sakota K, Sekiya H, Dopfer O, Fujii M 2018 Phys. Chem. Chem. Phys. 20 3079Google Scholar

    [17]

    Bourgalais J, Roussel V, Capron M, Benidar A, Jasper A W, Klippenstein S J, Biennier L, Le Picard S D 2016 Phys. Rev. Lett. 116 113401Google Scholar

    [18]

    Guo J, Cao D Y, Chen J, Bian K, Xu L M, Wang E G, Jiang Y 2020 J. Chem. Phys. 152 234301Google Scholar

    [19]

    Rognoni A, Conte R, Ceotto M 2021 Chem. Sci. 12 2060Google Scholar

    [20]

    Lengyel J, Pysanenko A, Poterya V, Slavíček P, Fárník M, Kočišek J, Fedor J 2014 Phys. Rev. Lett. 112 113401Google Scholar

    [21]

    Shin J W, Hammer N I, Diken E G, Johnson M A, Walters R S, Jaeger T D, Duncan M A, Christie R A, Jordan K D 2004 Science 304 1137Google Scholar

    [22]

    Yu Q, Bowman J M 2017 J. Am. Chem. Soc. 139 10984Google Scholar

    [23]

    Pérez C, Muckle M T, Zaleski D P, Seifert N A, Temelso B, Shields G C, Kisiel Z, Pate B H 2012 Science 336 897Google Scholar

    [24]

    Cole W T S, Farrell J D, Wales D J, Saykally R J 2016 Science 352 1194Google Scholar

    [25]

    Arrhenius S A 1889 Z. Phys. Chem. 4 226

    [26]

    Lin W, Paesani F 2013 J. Chem. Phys. A 117 7131Google Scholar

    [27]

    Guggemos N, Slavíček P, Kresin V V 2015 Phys. Rev. Lett. 114 043401Google Scholar

    [28]

    Wang P J, Shi R L, Su Yan, Tang L L, Huang X M, Zhao J J 2019 Front. Chem. 7 624Google Scholar

    [29]

    Fárník M 2011 Molecular Dynamics in Free Clusters and Nanoparticles Studied in Molecular Beams (Prague: ICT Prague Press)

    [30]

    Lengyel J, Pysanenko A, Poterya V, Kočišek J, Fárník M 2014 Chem. Phys. Lett. 612 256Google Scholar

    [31]

    Hvelplund P, Kurtén T, Støchkel K, Ryding M J, Nielsen S B, Uggerud E 2010 J. Phys. Chem. A 114 7301Google Scholar

    [32]

    Sundén A E K, Støchkel K, Hvelplund P, Nielsen S B, Dynefors B, Hansen K 2018 J. Chem. Phys. 148 184306Google Scholar

    [33]

    Samanta A K, Wang Y M, Mancini J S, Bowman J M, Reisler H 2016 Chem. Rev. 116 4913Google Scholar

    [34]

    Christensen E G, Steele R P 2019 J. Phys. Chem. A 123 8657Google Scholar

    [35]

    Cobar E A, Horn P R, Bergman R G, Head-Gordon M 2012 Phys. Chem. Chem. Phys. 14 15328Google Scholar

    [36]

    Li H Y, Kong X T, Jiang L, Liu Z F 2019 J. Phys. Chem. Lett. 10 2162Google Scholar

    [37]

    Tachikawa H 2017 J. Phys. Chem. A 121 5237Google Scholar

    [38]

    Zuraski K, Kwasniewski D, Samanta A K, Reisler H 2016 J. Phys. Chem. Lett. 7 4243Google Scholar

    [39]

    Bresnahan C G, David R, Milet A, Kumar R 2019 J. Phys. Chem. A 123 9371Google Scholar

    [40]

    de Tudela R P, Marx D 2017 Phys. Rev. Lett. 119 259901Google Scholar

    [41]

    Zakai I, Varner M E, Gerber R B 2017 Phys. Chem. Chem. Phys. 19 20641Google Scholar

    [42]

    Miyazaki M, Fujii A, Ebata T, Mikami N 2004 Science 304 1134Google Scholar

    [43]

    Mizuse K, Fujii A 2013 J. Phys. Chem. A 117 929Google Scholar

    [44]

    Haberland H 1994 Clusters of Atoms and Molecules (Berlin: Springer-Verlag) p207

    [45]

    Siffert L, Blaser S, Ottiger P, Leutwyler S 2018 J. Phys. Chem. A 122 9285Google Scholar

    [46]

    Huang C F 2018 J. Clust. Sci. 29 959Google Scholar

    [47]

    Mizuse K, Fujii A 2011 Phys. Chem. Chem. Phys. 13 7129Google Scholar

    [48]

    Bing D, Hamashima T, Fujii A, Kuo J 2010 J. Phys. Chem. A 114 8170Google Scholar

    [49]

    Vacher J R, Duc E L, Fitaire M 1994 Int. J. Mass Spectrom. Ion Processes 135 139Google Scholar

    [50]

    Pysanenko A, Lengyel J, Fárník M 2018 J. Chem. Phys. 148 154301Google Scholar

    [51]

    Kočišek J, Lengyel J, Fárník M, Slavíček P 2013 J. Chem. Phys. 139 214308Google Scholar

    [52]

    Belau L, Wilson K R, Leone S R, Ahmed M 2007 J. Phys. Chem. A 111 10075Google Scholar

    [53]

    Litman J H, Yoder B L, Schläppi B, Signorell R 2013 Phys. Chem. Chem Phys. 15 940Google Scholar

    [54]

    Huang C F, Kresin V V, Pysanenko A, Fárník M 2016 J. Chem. Phys. 145 104304Google Scholar

    [55]

    Moro R, Rabinovitch R, Kresin V V 2005 Rev. Sci. Instrum. 76 056104Google Scholar

    [56]

    Moro R, Rabinovitch R, Kresin V V 2006 J. Chem. Phys. 124 146102Google Scholar

    [57]

    Poterya V, Fárník M, Slavíček P, Buck U, Kresin V V 2007 J. Chem. Phys. 126 071101Google Scholar

    [58]

    Fárník M, Fedor J, Kočišek J, Lengyel J, PluhařováE, Poterya V, Pysanenko A 2021 Phys. Chem. Chem. Phys. 23 3195Google Scholar

    [59]

    Zhong Q, Hurley S M, Castleman Jr A W 1999 J. Mass Spectrom. 185 905Google Scholar

    [60]

    Ahmed M, Apps C J, Buesnel R, Hughes C, Hillier I H, Watt N E, Whitehead J C 1997 J. Phys. Chem. A 101 1254Google Scholar

    [61]

    Moro R, Rabinovitch R, Kresin V V 2005 J. Chem. Phys. 123 074301Google Scholar

    [62]

    Pauly H 2000 Atom, Molecule, and Cluster Beams (Vol. 2) (Berlin: Springer-Verlag) p70

    [63]

    Huang C F 2018 J. Phys. Chem. A 122 8998Google Scholar

    [64]

    Toennies J P, Vilesov A F, Whaley K B 2001 Phys. Today 54 31

    [65]

    Verma D, Erukala S, Vilesov A F 2020 J. Phys. Chem. A 124 6207Google Scholar

    [66]

    Vongehr S, Kresin V V 2003 J. Chem. Phys. 119 11124Google Scholar

    [67]

    Letzner M, Gruen S, Habig D, et al. 2013 J. Chem. Phys. 139 154304Google Scholar

    [68]

    Gutberlet A, Schwaab G, Birer O, Masia M, Kaczmarek A, Forbert H, Havenith M, Marx D 2009 Science 324 1545Google Scholar

    [69]

    Flynn S D, Skvortsov D, Morrison A M, Liang T, Choi M Y, Douberly G E, Vilesov A F 2010 J. Phys. Chem. Lett 1 2233Google Scholar

    [70]

    Raggl S, Gitzl N, Martini P, Scheier P, Echt O 2018 Eur. Phys. J. D 72 130Google Scholar

    [71]

    Ren Y, Moro R, Kresin V V 2007 Eur. Phys. J. D 43 109Google Scholar

    [72]

    Kranabetter L, Martini P, Gitzl N, et al. 2018 Phys. Chem. Chem. Phys. 20 21573Google Scholar

    [73]

    Douberly G E, Miller R E, Xantheas S S 2017 J. Am. Chem. Soc. 139 4152Google Scholar

    [74]

    Mani D, Pal N, Smialkowski M, Beakovic C, Schwaab G, Havenith M 2019 Phys. Chem. Chem. Phys. 21 20582Google Scholar

    [75]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2007 Chem. Phys. Lett. 439 265Google Scholar

    [76]

    Müller S, Krapf S, Koslowski T, Mudrich M, Stienkemeier F 2009 Phys. Rev. Lett. 102 183401Google Scholar

    [77]

    Ratschek M, Kocha M, Ernst W E 2012 J. Chem. Phys. 136 104201Google Scholar

    [78]

    Niman J W, Kamerin B S, Merthe D J, Kranabetter L, Kresin V V 2019 Phys. Rev. Lett. 123 043203Google Scholar

    [79]

    Volk A, Thaler P, Knez D, Hauser A W, Steurer J, Grogger W, Hofer F, Ernst W E 2016 Phys. Chem. Chem. Phys. 18 1451Google Scholar

    [80]

    Raston P L, Douberly G, Jäger W 2014 J. Chem. Phys. 141 044301Google Scholar

    [81]

    Loginov E, Gomez L F, Chiang N, Halder A, Guggemos N, Kresin V V, Vilesov A F 2011 Phys. Rev. Lett. 106 233401Google Scholar

    [82]

    Vaida V 2011 J. Chem. Phys. 135 020901Google Scholar

    [83]

    Inaba S 2014 J. Phys. Chem. A 118 3026Google Scholar

    [84]

    Romero-Montalvo E, Guevara-Vela J M, Narváez W E V, et al. 2017 Chem. Commun. 53 3516Google Scholar

  • 图 1  (a) 水团簇源装置图, 其中标红的3个部分构成了共膨胀掺杂水团簇的基本条件, 即包括可盛入纯水或混合液体的广口瓶、装载管、水团簇源; (b) 实验将甲醇和纯水以约1∶5的体积比混合, 经过超声膨胀, 获得的水-甲醇混合团簇质谱, 尽管甲醇相比于水含量较小, 但是从图上可看出水-甲醇混合团簇的信号却远强于纯水团簇的信号(红色箭头标记处为纯水团簇峰); 插图(c)是75—125 amu质量范围内的质谱放大图[46], 其版权已获得Nature Springer的许可

    Fig. 1.  (a) Diagram of water cluster source chamber, in which the three parts marked in red constitute the basic conditions for co-expanding to attain doped water clusters, including a jar that can be filled with pure water or mixed liquid, a loading tube, and a water cluster source. (b) In the experiment, methanol and pure water were mixed in a volume ratio of about 1∶5, and after supersonic expansion, the mass spectrum of the water-methanol mixed cluster was obtained. The content of methanol was much less than water, but the signal of water-methanol mixed clusters is much stronger than that of pure water clusters (the red arrow indicates the pure water cluster peak); The inset (c) is an enlarged drawing of the mass spectrum in the mass range of 75–125 amu[46], which is reprinted by the permission of Nature Springer.

    图 2  拾取腔通常放置于次级飞行腔, 如图中红色字体标注

    Fig. 2.  Pickup cell is usually placed in the secondary flight chamber, as marked in red fonts.

    图 3  (a)是毛细管掺杂装置图; 基于毛细管方法, (b)为获得的DCl与水团簇的混合质谱; (c)和(d)分别为CH3OH和NH3掺杂后水团簇的质谱, 这两种分子气体似乎很难应用毛细管方法掺杂进水团簇中. 其中图(b)和(c)引自参考文献[46], 其版权已获得Nature Springer的许可

    Fig. 3.  (a) Design diagram of the capillary with the water cluster source. Based on the capillary method, panel (b) is the obtained mixed mass spectrum of DC1 and water clusters; panel (c) and (d) are the mass spectra of water clusters after doped with CH3OH and NH3, respectively. These two molecular gases seem hardly doping into water clusters by the capillary methods. Panels (b) and (c) are cited from Ref. [46], which are reprinted here by the permission of Nature Springer.

    表 1  四种掺杂水团簇方法的特点总结

    Table 1.  Summary of the characteristics of four water cluster doping methods.

    掺杂方法共膨胀拾取腔毛细管氦团簇拾取
    特性被掺杂的原子或分子处于
    水团簇结构内部
    被掺杂的原子或分子处于
    水团簇表面
    外来分子或原子径向
    速度可忽略不计
    可获得基态结构的混合水团簇
    优点信号强度高、搭建成本较低廉适用于不同气体及具有
    较低熔点的金属等
    设计搭建简单、维护成本低廉应用性广, 可掺杂具有
    较高熔点的金属等
    缺点仅适用于低温或易溶解的
    被掺杂物质
    信号强度低、设计搭建及维护成本较高仅适用于HCl、DCl等
    酸性气体的掺杂
    技术要求高、设计搭建及
    维护成本昂贵
    下载: 导出CSV
  • [1]

    de Heer W A 1993 Rev. Mod. Phys. 65 611Google Scholar

    [2]

    Brack M 1993 Rev. Mod. Phys. 65 677Google Scholar

    [3]

    王广厚 2003 团簇物理学 (上海: 科学出版社) 第1−3页

    Wang G H 2003 Cluster Physics (Shanghai: Scientific and Technical Publishers) pp1−3 (in Chinese)

    [4]

    Baletto F, Ferrando R 2005 Rev. Mod. Phys. 77 371Google Scholar

    [5]

    Johnston R L 2002 Atomic and Molecular Clusters (London: CRC Press) pp2, 3

    [6]

    Kolb C E, Jayne J T, Worsnop D R, Molina M J, Meads R F, Viggiano A V 1994 J. Am. Chem. Soc. 116 10314Google Scholar

    [7]

    Carlon H R 1979 Infrared Phys. 19 549Google Scholar

    [8]

    Carlon H R 1984 J. Phys. D 17 1221Google Scholar

    [9]

    Pugliano N, Saykally R J 1992 Science 257 1937Google Scholar

    [10]

    Saykally R J, Blake G A 1993 Science 259 1570Google Scholar

    [11]

    Saykally R J, Liu K, Cruzan J D 1996 Science 271 929Google Scholar

    [12]

    Cruzan J D, Braly L B, Liu K, Brown M G, Loeser J G, Saykally R J 1996 Science 271 59Google Scholar

    [13]

    Liu K, Brown M G, Cruzan J D, Saykally R J 1996 Science 271 62Google Scholar

    [14]

    Zho C C, Vlček V, Neuhauser D, Schwartz B J 2018 J. Phys. Chem. Lett. 9 5173Google Scholar

    [15]

    Zhang X W, Jie J L, Song D, Su H M 2020 J. Phys. Chem. A 124 6076Google Scholar

    [16]

    Miyazaki M, Naito A, Ikeda T, Klyne J, Sakota K, Sekiya H, Dopfer O, Fujii M 2018 Phys. Chem. Chem. Phys. 20 3079Google Scholar

    [17]

    Bourgalais J, Roussel V, Capron M, Benidar A, Jasper A W, Klippenstein S J, Biennier L, Le Picard S D 2016 Phys. Rev. Lett. 116 113401Google Scholar

    [18]

    Guo J, Cao D Y, Chen J, Bian K, Xu L M, Wang E G, Jiang Y 2020 J. Chem. Phys. 152 234301Google Scholar

    [19]

    Rognoni A, Conte R, Ceotto M 2021 Chem. Sci. 12 2060Google Scholar

    [20]

    Lengyel J, Pysanenko A, Poterya V, Slavíček P, Fárník M, Kočišek J, Fedor J 2014 Phys. Rev. Lett. 112 113401Google Scholar

    [21]

    Shin J W, Hammer N I, Diken E G, Johnson M A, Walters R S, Jaeger T D, Duncan M A, Christie R A, Jordan K D 2004 Science 304 1137Google Scholar

    [22]

    Yu Q, Bowman J M 2017 J. Am. Chem. Soc. 139 10984Google Scholar

    [23]

    Pérez C, Muckle M T, Zaleski D P, Seifert N A, Temelso B, Shields G C, Kisiel Z, Pate B H 2012 Science 336 897Google Scholar

    [24]

    Cole W T S, Farrell J D, Wales D J, Saykally R J 2016 Science 352 1194Google Scholar

    [25]

    Arrhenius S A 1889 Z. Phys. Chem. 4 226

    [26]

    Lin W, Paesani F 2013 J. Chem. Phys. A 117 7131Google Scholar

    [27]

    Guggemos N, Slavíček P, Kresin V V 2015 Phys. Rev. Lett. 114 043401Google Scholar

    [28]

    Wang P J, Shi R L, Su Yan, Tang L L, Huang X M, Zhao J J 2019 Front. Chem. 7 624Google Scholar

    [29]

    Fárník M 2011 Molecular Dynamics in Free Clusters and Nanoparticles Studied in Molecular Beams (Prague: ICT Prague Press)

    [30]

    Lengyel J, Pysanenko A, Poterya V, Kočišek J, Fárník M 2014 Chem. Phys. Lett. 612 256Google Scholar

    [31]

    Hvelplund P, Kurtén T, Støchkel K, Ryding M J, Nielsen S B, Uggerud E 2010 J. Phys. Chem. A 114 7301Google Scholar

    [32]

    Sundén A E K, Støchkel K, Hvelplund P, Nielsen S B, Dynefors B, Hansen K 2018 J. Chem. Phys. 148 184306Google Scholar

    [33]

    Samanta A K, Wang Y M, Mancini J S, Bowman J M, Reisler H 2016 Chem. Rev. 116 4913Google Scholar

    [34]

    Christensen E G, Steele R P 2019 J. Phys. Chem. A 123 8657Google Scholar

    [35]

    Cobar E A, Horn P R, Bergman R G, Head-Gordon M 2012 Phys. Chem. Chem. Phys. 14 15328Google Scholar

    [36]

    Li H Y, Kong X T, Jiang L, Liu Z F 2019 J. Phys. Chem. Lett. 10 2162Google Scholar

    [37]

    Tachikawa H 2017 J. Phys. Chem. A 121 5237Google Scholar

    [38]

    Zuraski K, Kwasniewski D, Samanta A K, Reisler H 2016 J. Phys. Chem. Lett. 7 4243Google Scholar

    [39]

    Bresnahan C G, David R, Milet A, Kumar R 2019 J. Phys. Chem. A 123 9371Google Scholar

    [40]

    de Tudela R P, Marx D 2017 Phys. Rev. Lett. 119 259901Google Scholar

    [41]

    Zakai I, Varner M E, Gerber R B 2017 Phys. Chem. Chem. Phys. 19 20641Google Scholar

    [42]

    Miyazaki M, Fujii A, Ebata T, Mikami N 2004 Science 304 1134Google Scholar

    [43]

    Mizuse K, Fujii A 2013 J. Phys. Chem. A 117 929Google Scholar

    [44]

    Haberland H 1994 Clusters of Atoms and Molecules (Berlin: Springer-Verlag) p207

    [45]

    Siffert L, Blaser S, Ottiger P, Leutwyler S 2018 J. Phys. Chem. A 122 9285Google Scholar

    [46]

    Huang C F 2018 J. Clust. Sci. 29 959Google Scholar

    [47]

    Mizuse K, Fujii A 2011 Phys. Chem. Chem. Phys. 13 7129Google Scholar

    [48]

    Bing D, Hamashima T, Fujii A, Kuo J 2010 J. Phys. Chem. A 114 8170Google Scholar

    [49]

    Vacher J R, Duc E L, Fitaire M 1994 Int. J. Mass Spectrom. Ion Processes 135 139Google Scholar

    [50]

    Pysanenko A, Lengyel J, Fárník M 2018 J. Chem. Phys. 148 154301Google Scholar

    [51]

    Kočišek J, Lengyel J, Fárník M, Slavíček P 2013 J. Chem. Phys. 139 214308Google Scholar

    [52]

    Belau L, Wilson K R, Leone S R, Ahmed M 2007 J. Phys. Chem. A 111 10075Google Scholar

    [53]

    Litman J H, Yoder B L, Schläppi B, Signorell R 2013 Phys. Chem. Chem Phys. 15 940Google Scholar

    [54]

    Huang C F, Kresin V V, Pysanenko A, Fárník M 2016 J. Chem. Phys. 145 104304Google Scholar

    [55]

    Moro R, Rabinovitch R, Kresin V V 2005 Rev. Sci. Instrum. 76 056104Google Scholar

    [56]

    Moro R, Rabinovitch R, Kresin V V 2006 J. Chem. Phys. 124 146102Google Scholar

    [57]

    Poterya V, Fárník M, Slavíček P, Buck U, Kresin V V 2007 J. Chem. Phys. 126 071101Google Scholar

    [58]

    Fárník M, Fedor J, Kočišek J, Lengyel J, PluhařováE, Poterya V, Pysanenko A 2021 Phys. Chem. Chem. Phys. 23 3195Google Scholar

    [59]

    Zhong Q, Hurley S M, Castleman Jr A W 1999 J. Mass Spectrom. 185 905Google Scholar

    [60]

    Ahmed M, Apps C J, Buesnel R, Hughes C, Hillier I H, Watt N E, Whitehead J C 1997 J. Phys. Chem. A 101 1254Google Scholar

    [61]

    Moro R, Rabinovitch R, Kresin V V 2005 J. Chem. Phys. 123 074301Google Scholar

    [62]

    Pauly H 2000 Atom, Molecule, and Cluster Beams (Vol. 2) (Berlin: Springer-Verlag) p70

    [63]

    Huang C F 2018 J. Phys. Chem. A 122 8998Google Scholar

    [64]

    Toennies J P, Vilesov A F, Whaley K B 2001 Phys. Today 54 31

    [65]

    Verma D, Erukala S, Vilesov A F 2020 J. Phys. Chem. A 124 6207Google Scholar

    [66]

    Vongehr S, Kresin V V 2003 J. Chem. Phys. 119 11124Google Scholar

    [67]

    Letzner M, Gruen S, Habig D, et al. 2013 J. Chem. Phys. 139 154304Google Scholar

    [68]

    Gutberlet A, Schwaab G, Birer O, Masia M, Kaczmarek A, Forbert H, Havenith M, Marx D 2009 Science 324 1545Google Scholar

    [69]

    Flynn S D, Skvortsov D, Morrison A M, Liang T, Choi M Y, Douberly G E, Vilesov A F 2010 J. Phys. Chem. Lett 1 2233Google Scholar

    [70]

    Raggl S, Gitzl N, Martini P, Scheier P, Echt O 2018 Eur. Phys. J. D 72 130Google Scholar

    [71]

    Ren Y, Moro R, Kresin V V 2007 Eur. Phys. J. D 43 109Google Scholar

    [72]

    Kranabetter L, Martini P, Gitzl N, et al. 2018 Phys. Chem. Chem. Phys. 20 21573Google Scholar

    [73]

    Douberly G E, Miller R E, Xantheas S S 2017 J. Am. Chem. Soc. 139 4152Google Scholar

    [74]

    Mani D, Pal N, Smialkowski M, Beakovic C, Schwaab G, Havenith M 2019 Phys. Chem. Chem. Phys. 21 20582Google Scholar

    [75]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2007 Chem. Phys. Lett. 439 265Google Scholar

    [76]

    Müller S, Krapf S, Koslowski T, Mudrich M, Stienkemeier F 2009 Phys. Rev. Lett. 102 183401Google Scholar

    [77]

    Ratschek M, Kocha M, Ernst W E 2012 J. Chem. Phys. 136 104201Google Scholar

    [78]

    Niman J W, Kamerin B S, Merthe D J, Kranabetter L, Kresin V V 2019 Phys. Rev. Lett. 123 043203Google Scholar

    [79]

    Volk A, Thaler P, Knez D, Hauser A W, Steurer J, Grogger W, Hofer F, Ernst W E 2016 Phys. Chem. Chem. Phys. 18 1451Google Scholar

    [80]

    Raston P L, Douberly G, Jäger W 2014 J. Chem. Phys. 141 044301Google Scholar

    [81]

    Loginov E, Gomez L F, Chiang N, Halder A, Guggemos N, Kresin V V, Vilesov A F 2011 Phys. Rev. Lett. 106 233401Google Scholar

    [82]

    Vaida V 2011 J. Chem. Phys. 135 020901Google Scholar

    [83]

    Inaba S 2014 J. Phys. Chem. A 118 3026Google Scholar

    [84]

    Romero-Montalvo E, Guevara-Vela J M, Narváez W E V, et al. 2017 Chem. Commun. 53 3516Google Scholar

  • [1] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [2] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [3] 赵家瑞, 李毅飞, 马景龙, 王进光, 黄开, 韩玉晶, 马勇, 闫文超, 李大章, 袁大伟, 李玉同, 张杰, 陈黎明. 常温下氙气以及氢氙混合气体形成的团簇的特性研究. 物理学报, 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [4] 郭尔夫, 韩纪锋, 李永青, 杨朝文, 周荣. 超声喷流氩氢混合团簇特性研究. 物理学报, 2014, 63(10): 103601. doi: 10.7498/aps.63.103601
    [5] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [6] 类成新, 冯东太, 吴振森. 掺杂对随机分布团簇粒子缪勒矩阵的影响. 物理学报, 2011, 60(11): 115202. doi: 10.7498/aps.60.115202
    [7] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [8] 刘莹, 倪晓武. 乙醇-水团簇分子形成激基缔合物及荧光发射机理研究. 物理学报, 2009, 58(5): 3572-3577. doi: 10.7498/aps.58.3572
    [9] 张成国, 章晓中. La1-xCaxMnO3(x≤1/3)中Ca掺杂的团簇化及其稳定性. 物理学报, 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [10] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法. 物理学报, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [11] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [12] 刘 莹, 宋春元, 何文亮, 骆晓森, 陆 建, 倪晓武. 用偏振荧光光谱表征乙醇-水团簇分子的取向行为. 物理学报, 2007, 56(5): 2962-2967. doi: 10.7498/aps.56.2962
    [13] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究. 物理学报, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [14] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [15] 李领伟, 曹世勋, 黎文峰, 刘 芬, 池长昀, 敬 超, 张金仓. 氧含量对Fe掺杂YBCO体系中载流子局域化与离子团簇效应的影响. 物理学报, 2005, 54(8): 3839-3844. doi: 10.7498/aps.54.3839
    [16] 王红艳, 李喜波, 唐永建, 谌晓洪, 王朝阳, 朱正和. AunXm(n+m=4,X=Cu,Al,Y)混合小团簇的结构和稳定性研究. 物理学报, 2005, 54(8): 3565-3570. doi: 10.7498/aps.54.3565
    [17] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
    [18] 朱 萍, 唐景昌, 何江平. 多重散射团簇方法对吸附系统SO2/Ag(110)的理论分析. 物理学报, 2000, 49(8): 1632-1638. doi: 10.7498/aps.49.1632
    [19] 法伟, 罗成林. 硅团簇结构和碎片行为的紧束缚理论方法. 物理学报, 2000, 49(3): 430-434. doi: 10.7498/aps.49.430
    [20] 罗成林, 周延怀, 张 益. 镍原子团簇几何结构的紧束缚方法模拟 . 物理学报, 2000, 49(1): 54-56. doi: 10.7498/aps.49.54
计量
  • 文章访问数:  5082
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-05-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回