-
基于时间反演腔的电磁波时间反演技术在许多方面有着潜在的应用, 如脉冲压缩、功率合成、微扰探测、波束成形等. 其中, 时间反演腔通常采用具有多径传输特征的微波混沌腔. 利用衍射理论, 虽然可以证明这类腔体在时间反演过程中具有时空聚焦特性并可用于脉冲压缩, 但是它不能用于分析腔体的反演性能. 为了得到一个合适的分析方法并可用于指导时间反演腔设计, 本文基于信道理论, 分析电磁波传播的散射、扩散和衰减特性, 构建了时间反演腔的多径信道模型, 并详细研究了路径之间的串扰特征, 给出反演重构信号的时间旁瓣产生机理、时移特征以及对主瓣的干扰情况. 另外, 根据随机平面波假设, 还分析了空间焦斑的分布特征. 实际焦斑大小不但受限于衍射极限而且还与初始焦斑大小有关. 这些理论分析结果与实验和数值仿真结果基本一致.The electromagnetic wave time reversal technology using time reversal cavity (TRC) has potential applications in many areas, such as pulse compression, power synthesis, perturbation detection, beamforming, etc. Microwave chaotic cavity with multi-path transmission characteristics is usually used in TRC. Based on diffraction theory, it can prove that this kind of cavity has spatiotemporal focusing characteristics and can be used for compressing pulses, but it cannot be used to analyze the reversal performance of the cavity. In order to obtain a suitable analysis method and guide the design of TRC, in this work, the scattering, diffusion and attenuation characteristics of electromagnetic wave propagation are analyzed and a multipath channel model of TRC is built by the channel theory. Moreover, the crosstalk characteristics between paths are studied, and the generation mechanism of time sidelobe, time sidelobe shift and interference are also investigated. In addition, under the assumption of random plane wave, the distribution characteristics of spatial focal spot are analyzed, which is consistent with the diffraction theory. Moreover, the actual focal spot size is not only limited by the diffraction limit, but also related to the initial focal spot size. The theoretical analysis results are basically consistent with the experimental and numerical simulation results.
-
Keywords:
- time reversal cavity /
- multipath channel model /
- path crosstalk /
- random plane wave
[1] Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 1939041
[2] Fink M, Prada C, Wu F, Cassereau D 1989 Proceedings IEEE Ultrasonics Symposium Montreal, Canada, October 1989 p681
[3] Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar
[4] Rosny J D, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propa. 58 3139Google Scholar
[5] Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 9
[6] Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar
[7] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝 2015 物理学报 64 204101Google Scholar
Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101Google Scholar
[8] 朱江, 王雁, 杨甜 2018 物理学报 67 050201Google Scholar
Zhu J, Wang Y, Yang T 2018 Acta Phys. Sin. 67 050201Google Scholar
[9] Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145Google Scholar
[10] 臧锐 2018 博士学位论文 (成都: 电子科技大学)
Zang R 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese)
[11] Montaldo G, Palacio D, Tanter M, Fink M 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 9Google Scholar
[12] 臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar
Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar
[13] Fromenteze T, Decroze C, Carsenat D 2014 IEEE International Conference on Ultra-WideBand ICUWB, Paris, France, Sepertember 1-3, 2014 p6958949
[14] Hong S K, Taddese B T, Drikas Z B, Anlage S M, Andreadis T D 2013 J. Electromagn. Waves Appl. 27 10
[15] Hong S K, Mendez Vi, Wall W S, Liao R 2014 IEEE Antennas Wirel. Propag. Lett. 13 2318673
[16] Fromenteze T, Kpre E L, Decroze C, Carsenat D 2016 Int. J. Microwave Wireless Technolog. 8 815Google Scholar
[17] Xiao B, Antonsen T M, Ott E, Anlage S M 2016 Phys. Rev. E 93 052205Google Scholar
[18] Taddese B T 2012 Ph. D. Dissertation (Maryland: University of Maryland)
[19] Taddese B T, Gradoni G, Moglie F, Antonsen T M, Ott E, Anlage S M 2013 New J. Phys. 15 023025Google Scholar
[20] 院琳, 杨雪松, 王秉中 2019 物理学报 68 170503Google Scholar
Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar
[21] Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar
[22] Zheng X 2006 Ph. D. Dissertation (Maryland: University of Maryland)
[23] 陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 物理学报 62 070504Google Scholar
Lu X C, Wang J G, Liu Y, Li S, Hang F 2013 Acta Phys. Sin. 62 070504Google Scholar
[24] Derode A, Tourin A, Fink M 2001 Phys. Rev. E 64 036606Google Scholar
[25] 陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 8
Lu X C, Wang J G, Hang F, Liu Y 2011 High Power Laser and Particle Beams 23 8
[26] Rosny J D, Fink M 2002 Phy. Rev. Lett. 89 12
[27] Lerosey G, Rosny J D, Tourin A, Fink M 2007 Science 315 1120Google Scholar
[28] 陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101Google Scholar
Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101Google Scholar
-
-
[1] Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 1939041
[2] Fink M, Prada C, Wu F, Cassereau D 1989 Proceedings IEEE Ultrasonics Symposium Montreal, Canada, October 1989 p681
[3] Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar
[4] Rosny J D, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propa. 58 3139Google Scholar
[5] Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 9
[6] Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar
[7] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝 2015 物理学报 64 204101Google Scholar
Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101Google Scholar
[8] 朱江, 王雁, 杨甜 2018 物理学报 67 050201Google Scholar
Zhu J, Wang Y, Yang T 2018 Acta Phys. Sin. 67 050201Google Scholar
[9] Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145Google Scholar
[10] 臧锐 2018 博士学位论文 (成都: 电子科技大学)
Zang R 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese)
[11] Montaldo G, Palacio D, Tanter M, Fink M 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 9Google Scholar
[12] 臧锐, 王秉中, 丁帅, 龚志双 2016 物理学报 65 204102Google Scholar
Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102Google Scholar
[13] Fromenteze T, Decroze C, Carsenat D 2014 IEEE International Conference on Ultra-WideBand ICUWB, Paris, France, Sepertember 1-3, 2014 p6958949
[14] Hong S K, Taddese B T, Drikas Z B, Anlage S M, Andreadis T D 2013 J. Electromagn. Waves Appl. 27 10
[15] Hong S K, Mendez Vi, Wall W S, Liao R 2014 IEEE Antennas Wirel. Propag. Lett. 13 2318673
[16] Fromenteze T, Kpre E L, Decroze C, Carsenat D 2016 Int. J. Microwave Wireless Technolog. 8 815Google Scholar
[17] Xiao B, Antonsen T M, Ott E, Anlage S M 2016 Phys. Rev. E 93 052205Google Scholar
[18] Taddese B T 2012 Ph. D. Dissertation (Maryland: University of Maryland)
[19] Taddese B T, Gradoni G, Moglie F, Antonsen T M, Ott E, Anlage S M 2013 New J. Phys. 15 023025Google Scholar
[20] 院琳, 杨雪松, 王秉中 2019 物理学报 68 170503Google Scholar
Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar
[21] Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar
[22] Zheng X 2006 Ph. D. Dissertation (Maryland: University of Maryland)
[23] 陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 物理学报 62 070504Google Scholar
Lu X C, Wang J G, Liu Y, Li S, Hang F 2013 Acta Phys. Sin. 62 070504Google Scholar
[24] Derode A, Tourin A, Fink M 2001 Phys. Rev. E 64 036606Google Scholar
[25] 陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 8
Lu X C, Wang J G, Hang F, Liu Y 2011 High Power Laser and Particle Beams 23 8
[26] Rosny J D, Fink M 2002 Phy. Rev. Lett. 89 12
[27] Lerosey G, Rosny J D, Tourin A, Fink M 2007 Science 315 1120Google Scholar
[28] 陈英明, 王秉中, 葛广顶 2012 物理学报 61 024101Google Scholar
Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101Google Scholar
计量
- 文章访问数: 3651
- PDF下载量: 77
- 被引次数: 0