搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光场下原子超快动力学过程中的能量交换

李盈傧 秦玲玲 陈红梅 李怡涵 何锦锦 史璐珂 翟春洋 汤清彬 刘爱华 余本海

引用本文:
Citation:

强激光场下原子超快动力学过程中的能量交换

李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海

Energy exchange in ultrafast dynamics of atom with strong laser fields

Li Ying-Bin, Qin Ling-Ling, Chen Hong-Mei, Li Yi-Han, He Jin-Jin, Shi Lu-Ke, Zhai Chun-Yang, Tang Qing-Bin, Liu Ai-Hua, Yu Ben-Hai
PDF
HTML
导出引用
  • 利用三维经典系综模型, 研究了整个系综两电子(Ar原子为例)从激光场吸收的能量对激光参数(波长、激光强度和椭偏率)的依赖关系. 结果显示, 当激光强度固定, 波长增加时, 整个系综两电子从激光场吸收的能量整体呈上升趋势, 但不同强度下趋势略有差异. 在较低强度时整个系综两电子从激光场吸收的能量对波长的依赖关系呈现持续平稳增加的趋势, 在较高强度时呈现先缓慢减小再快速增大的趋势. 对强度的依赖关系在不同波长时呈现两个有趣的交叉点. 对椭偏率的依赖关系在较低强度时呈现先逐渐减小再缓慢增大的趋势; 在中等强度时呈现一个“阶梯型”即先缓慢增大再逐渐减小最后缓慢增大; 在更高强度时呈现先逐渐增大再逐渐减小的趋势. 为了解释整个系综两电子从激光场吸收的能量对激光参数的依赖关系,把整个系综的动力学过程分为双电离、单电离、受挫单电离和受挫双电离4种通道. 然后分析各个通道的特征及其如何主导整个系综两电子从激光场吸收的能量的变化趋势. 分析结果表明, 整个系综两电子从激光场吸收的能量对波长、激光强度和椭偏率的依赖均是由于某种通道主导整个系综两电子从激光场吸收的能量的结果.
    Using the three-dimensional classical ensemble model, we investigate the dependence of the energy absorbed by two electrons (Ar atom as an example) from the laser field on the laser parameters (wavelength, laser intensity and ellipticity). The results show that when the laser intensity is fixed and the wavelength increases, the energy absorbed by the two electrons from the laser field increases as a whole, but the trend is slightly different under different intensities. At lower intensity the dependence of the energy absorbed by the two electrons from the laser field on wavelength increases steadily and at higher intensity it decreases slowly and then increases rapidly. The intensity dependence of the energy absorbed by two electrons from the laser field in the whole ensemble presents two interesting intersections at different wavelengths. The dependence of the energy absorbed by the two electrons from the laser field on the ellipticity first decreases and then increases slowly at lower intensity; it has a “Ladder shape” that slowly increases and then decreases and finally slowly increases at moderate intensity; it shows a trend of increasing first and then decreasing at higher intensities. In order to explain the dependence of the energy absorbed by two electrons from the laser field on the laser parameters (wavelength, laser intensity and ellipticity), the kinetic process of the whole ensemble is divided into four channels: double ionization, single ionization, frustrated single ionization and frustrated double ionization. The characteristics of each channel and how it dominates the overall trend of energy absorption from the laser field by the two electrons are then analyzed. The analysis results show that the dependence of the energy absorbed by the two electrons from the laser field on wavelength、laser intensity and ellipticity is due to the fact that some channels dominate the energy absorbed by the two electrons from the laser field.
      通信作者: 刘爱华, aihualiu@jlu.edu.cn ; 余本海, hnyubenhai@163.com
    • 基金项目: 国家自然科学基金(批准号: 12074329, 12004323, 12104389, 1174131, 91850114)、 河南省高等学校重点科研项目(批准号: 20A140025)和信阳师范学院“南湖学者奖励计划”青年项目、信阳师范学院研究生科研创新基金资助的课题.
      Corresponding author: Liu Ai-Hua, aihualiu@jlu.edu.cn ; Yu Ben-Hai, hnyubenhai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074329, 12004323, 12104389, 1174131, 91850114), the Key Scientific Research Projects of Higher Education Department of Henan Province, China (Grant No. 20A140025), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [2]

    Becker W, Grasbon F, Kopold R, Miloševic D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [3]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [4]

    Seres J, Seres E, Verhoef A J, Tempea G, Streli C, Wobrauschek P, Yakovlev V, Scrinzi A, Spielmann C, Krausz F 2005 Nature 433 596Google Scholar

    [5]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [6]

    Zhai C Y, Zhu X S, Long J, Shao R Z, Zhang Y F, He L X, Tang Q B, Li Y B, Lan P F, Yu B H, Lu P X 2021 Phys. Rev. A 103 033104Google Scholar

    [7]

    Sun F H, Chen X, Zhang W B, Qiang J J, Li H, Lu P F, Gong X C, Ji Q Y, Lin K, Li H X, Tong J H, Chen F, Ruiz C, Wu J, He F 2020 Phys. Rev. A 101 021402Google Scholar

    [8]

    Kang H P, Chen S, Wang Y L, Chu W, Yao J P, Chen J, Liu X J, Cheng Y, Xu Z Z 2019 Phys. Rev. A 100 033403Google Scholar

    [9]

    Liu Y, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [10]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [11]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [12]

    Quan W, Hao X L, Hu X Q, Sun R P, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Lai X Y, Li X Y, Becker W, Wu Y, Wang J G, Liu X J, Chen J 2017 Phys. Rev. Lett. 119 243203Google Scholar

    [13]

    Chen Z J, Wen H, Liu F, Morishita T, Zatsarinny O, Bartschat K 2020 Opt. Express 28 6490Google Scholar

    [14]

    余本海, 李盈傧, 汤清彬 2012 物理学报 61 203201Google Scholar

    Yu B H, Li Y B, Tang Q B 2012 Acta Phys. Sin. 61 203201Google Scholar

    [15]

    Li Y B, Wang X, Yu B H, Tang Q B, Wang G H, Wan J G 2016 Sci. Rep. 6 37413Google Scholar

    [16]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [17]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [18]

    Liao Q, Li Y, Qin M Y, Lu P X 2017 Phys. Rev. A 96 063408Google Scholar

    [19]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Zhou Y M, Huang C, Lu P X 2012 Opt. Express 20 20201Google Scholar

    [22]

    Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nature 7 428

    [23]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [24]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [25]

    Shvetsov-Shilovski N I, Sayler A M, Rathje T, Paulus G G 2011 Phys. Rev. A 83 033401Google Scholar

    [26]

    Fleischer A, Wörner H J, Arissian L, Liu L R, Meckel M, Rippert A, Dörner R, Villeneuve D M, Corkum P B, Staudte A 2011 Phys. Rev. Lett. 107 113003Google Scholar

    [27]

    Wang X, Tian Justin, Eberly J H 2013 Phys. Rev. Lett. 110 073001Google Scholar

    [28]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008 Phys. Rev. Lett. 101 233001Google Scholar

    [29]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [30]

    Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar

    [31]

    Shomsky K N, Smith Z S, Hann S L 2009 Phys. Rev. A 79 061402Google Scholar

    [32]

    Sayler A M, McKenna J, Gaire B, Kling N G, Carnes K D, Ben-Itzhak I 2012 Phys. Rev. A 86 033425Google Scholar

    [33]

    Chen A, Price H, Staudte A, Emmanouilidou A 2016 Phys. Rev. A 94 043408Google Scholar

    [34]

    Larimian S, Erattupuzha S, Baltuška A, Kitzler-Zeiler M, Xie X 2020 Phys. Rev. Res. 2 013021Google Scholar

    [35]

    Li Y B, Xu J K, Yu B H, Wang X 2020 Opt. Express 28 7341Google Scholar

    [36]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [37]

    Liu A H, Thumm Uwe 2014 Phys. Rev. A 89 063423Google Scholar

    [38]

    Liu A H, Thumm Uwe 2015 Phys. Rev. A 91 043416Google Scholar

    [39]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [40]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [41]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [42]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001Google Scholar

    [43]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [44]

    Li Y B, Mei L L, Chen H M, Xu J K, Tang Q B, Zhao Y G, Han Q Q, Wang C L, Tong A H, Ge G X, Yu B H 2018 Int. J. Mod. Phys. B 32 1850302Google Scholar

    [45]

    Li Y B, Xu J K, Chen H M, Li Y H, He J J, Qin L L, Shi L K, Zhao Y G, Tang Q B, Zhai C Y, Yu B H 2021 Opt. Commun. 493 127019Google Scholar

  • 图 1  整个系综两电子从激光场吸收的能量$ \Delta {E_{\text{t}}} $随波长的变化曲线, 对应的激光强度分别为0.1 PW/cm2 (深蓝色实心圆点) 和 0.5 PW/cm2 (绿色实心方块).

    Fig. 1.  Energy absorbed by two electrons from the laser field in the whole ensemble $ \Delta {E_{\text{t}}} $ as a function of wavelength, the corresponding laser intensities are 0.1 PW/cm2 (dark blue solid dot) and 0.5 PW/cm2 (green solid square) respectively.

    图 2  双电子系统与激光相互作用时4种典型的物理过程: DI, SI, FDI和FSI. 左列: 两个电子的能量随时间的演化, 右列: 两个电子到原子核的距离随时间的演化.

    Fig. 2.  There are four typical physical processes in the interaction between a two-electron system and a laser: DI, SI, FDI and FSI. Left column: the energy of the two electrons as a function of time; right column: the distance between the two electrons and the nucleus as a function of time.

    图 3  4种通道的波长依赖 (a) (b) 4种通道下两电子从激光场吸收的能量$ \Delta {E_{\text{c}}} $随波长的变化曲线; (c) (d) 4种通道的产率随波长的变化曲线; (e) (f) 4种通道在整个系综中两电子从激光场吸收的能量$ \Delta E_{\text{t}}^{\text{c}} $随波长的变化曲线以及整个系综两电子从激光场吸收的能量$ \Delta {E_{\text{t}}} $随波长的变化曲线. 左列和右列对应的激光强度分别为0.1和0.5 PW/cm2.

    Fig. 3.  Wavelength dependence of the four channels: (a) (b)$ \Delta {E_{\text{c}}} $ as a function of wavelength in four channels; (c) (d) probabilities of the four channels as a function of wavelength; (e) (f) $ \Delta E_{\text{t}}^{\text{c}} $ and $ \Delta {E_{\text{t}}} $ as a function of wavelength. The laser intensities corresponding to the left and right columns are 0.1 and 0.5 PW/cm2.

    图 4  整个系综两电子从激光场吸收的能量$ \Delta {E_{\text{t}}} $随强度的变化曲线, 对应的波长分别为400 nm (红色实心菱形线) 和1600 nm (绿色实心三角形线).

    Fig. 4.  Energy absorbed by two electrons from the laser field in the whole ensemble $ \Delta {E_{\text{t}}} $ as a function of intensity, the corresponding wavelengths are 400 nm (red solid diamond line) and 1600 nm (green solid triangle line) respectively.

    图 5  (a)−(d)不同波长下4种通道两电子从激光场吸收的能量$ \Delta {E_{\text{c}}} $随强度的变化曲线; (e)−(h)不同波长下4种通道的产率随强度的变化曲线; (i)−(l)不同波长下4种通道在整个系综中两电子从激光场吸收的能量$ \Delta E_{\text{t}}^{\text{c}} $随强度的变化曲线. 从左到右依次为DI, SI, FDI和FSI通道. 红色空心菱形(三角形)代表DI通道, 紫色空心菱形(三角形)代表SI通道, 浅蓝色空心菱形(三角形)代表FDI通道, 橙色空心菱形(三角形)代表FSI通道. 对应的波长分别为400 nm (菱形)和1600 nm (三角形).

    Fig. 5.  (a)−(d) $ \Delta {E_{\text{c}}} $ in four channels at different wavelengths as a function of intensity; (e)−(h) probabilities of the four channels as a function of intensity at different wavelengths; (i)−(l) $ \Delta E_{\text{t}}^{\text{c}} $ in four channels as a function of intensity at different wavelengths. From left to right are DI, SI, FDI and FSI channels. The red hollow diamond (triangle) represents DI channel, the purple hollow diamond (triangle) represents SI channel, the light blue hollow diamond (triangle) represents FDI channel, and the orange hollow diamond (triangle) represents FSI channel. The corresponding wavelengths are 400 nm (diamond) and 1600 nm (triangle), respectively.

    图 6  整个系综两电子从激光场吸收的能量$ \Delta {E_{\text{t}}} $随椭偏率的变化, 对应的激光强度分别为0.5 PW/cm2 (红色实心圆形线)、3 PW/cm2 (深蓝色实心方形线) 和5 PW/cm2 (绿色实心五角星形线), 波长为800 nm.

    Fig. 6.  Energy absorbed by two electrons from the laser field in the whole ensemble $ \Delta {E_{\text{t}}} $ as a function of ellipticity, The corresponding laser intensities are 0.5 PW/cm2 (red solid circular line), 3 PW/cm2 (dark blue solid square line) and 5 PW/cm2 (green solid pentagram line), the wavelength is 800 nm.

    图 7  4种通道的椭偏率依赖 (a)−(c) 4种通道下两电子从激光场吸收的能量$ \Delta {E_{\text{c}}} $随椭偏率的变化; (d)−(f) 4种通道的产率随椭偏率的变化; (g)−(i) 4种通道在整个系综中两电子从激光场吸收的能量$ \Delta E_{\text{t}}^{\text{c}} $随椭偏率的变化以及整个系综两电子从激光场吸收的能量$ \Delta {E_{\text{t}}} $随椭偏率的变化. 左列、中间列、右列对应的激光强度分别为0.5, 3 和5 PW/cm2.

    Fig. 7.  Ellipticity dependence of the four channels: (a)−(c) $ \Delta {E_{\text{c}}} $ as a function of ellipticity in four channels; (d)−(f) probabilities of the four channels as a function of ellipticity; (g)−(i) $ \Delta E_{\text{t}}^{\text{c}} $ and $ \Delta {E_{\text{t}}} $ as a function of ellipticity. The laser intensities of the left, middle and right columns are 0.5, 3 and 5 PW/cm2.

  • [1]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [2]

    Becker W, Grasbon F, Kopold R, Miloševic D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [3]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [4]

    Seres J, Seres E, Verhoef A J, Tempea G, Streli C, Wobrauschek P, Yakovlev V, Scrinzi A, Spielmann C, Krausz F 2005 Nature 433 596Google Scholar

    [5]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [6]

    Zhai C Y, Zhu X S, Long J, Shao R Z, Zhang Y F, He L X, Tang Q B, Li Y B, Lan P F, Yu B H, Lu P X 2021 Phys. Rev. A 103 033104Google Scholar

    [7]

    Sun F H, Chen X, Zhang W B, Qiang J J, Li H, Lu P F, Gong X C, Ji Q Y, Lin K, Li H X, Tong J H, Chen F, Ruiz C, Wu J, He F 2020 Phys. Rev. A 101 021402Google Scholar

    [8]

    Kang H P, Chen S, Wang Y L, Chu W, Yao J P, Chen J, Liu X J, Cheng Y, Xu Z Z 2019 Phys. Rev. A 100 033403Google Scholar

    [9]

    Liu Y, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [10]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [11]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [12]

    Quan W, Hao X L, Hu X Q, Sun R P, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Lai X Y, Li X Y, Becker W, Wu Y, Wang J G, Liu X J, Chen J 2017 Phys. Rev. Lett. 119 243203Google Scholar

    [13]

    Chen Z J, Wen H, Liu F, Morishita T, Zatsarinny O, Bartschat K 2020 Opt. Express 28 6490Google Scholar

    [14]

    余本海, 李盈傧, 汤清彬 2012 物理学报 61 203201Google Scholar

    Yu B H, Li Y B, Tang Q B 2012 Acta Phys. Sin. 61 203201Google Scholar

    [15]

    Li Y B, Wang X, Yu B H, Tang Q B, Wang G H, Wan J G 2016 Sci. Rep. 6 37413Google Scholar

    [16]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [17]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [18]

    Liao Q, Li Y, Qin M Y, Lu P X 2017 Phys. Rev. A 96 063408Google Scholar

    [19]

    Schafer K J, Young B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [20]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [21]

    Zhou Y M, Huang C, Lu P X 2012 Opt. Express 20 20201Google Scholar

    [22]

    Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nature 7 428

    [23]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 109 053004Google Scholar

    [24]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007Google Scholar

    [25]

    Shvetsov-Shilovski N I, Sayler A M, Rathje T, Paulus G G 2011 Phys. Rev. A 83 033401Google Scholar

    [26]

    Fleischer A, Wörner H J, Arissian L, Liu L R, Meckel M, Rippert A, Dörner R, Villeneuve D M, Corkum P B, Staudte A 2011 Phys. Rev. Lett. 107 113003Google Scholar

    [27]

    Wang X, Tian Justin, Eberly J H 2013 Phys. Rev. Lett. 110 073001Google Scholar

    [28]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008 Phys. Rev. Lett. 101 233001Google Scholar

    [29]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [30]

    Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar

    [31]

    Shomsky K N, Smith Z S, Hann S L 2009 Phys. Rev. A 79 061402Google Scholar

    [32]

    Sayler A M, McKenna J, Gaire B, Kling N G, Carnes K D, Ben-Itzhak I 2012 Phys. Rev. A 86 033425Google Scholar

    [33]

    Chen A, Price H, Staudte A, Emmanouilidou A 2016 Phys. Rev. A 94 043408Google Scholar

    [34]

    Larimian S, Erattupuzha S, Baltuška A, Kitzler-Zeiler M, Xie X 2020 Phys. Rev. Res. 2 013021Google Scholar

    [35]

    Li Y B, Xu J K, Yu B H, Wang X 2020 Opt. Express 28 7341Google Scholar

    [36]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [37]

    Liu A H, Thumm Uwe 2014 Phys. Rev. A 89 063423Google Scholar

    [38]

    Liu A H, Thumm Uwe 2015 Phys. Rev. A 91 043416Google Scholar

    [39]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [40]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [41]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [42]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001Google Scholar

    [43]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [44]

    Li Y B, Mei L L, Chen H M, Xu J K, Tang Q B, Zhao Y G, Han Q Q, Wang C L, Tong A H, Ge G X, Yu B H 2018 Int. J. Mod. Phys. B 32 1850302Google Scholar

    [45]

    Li Y B, Xu J K, Chen H M, Li Y H, He J J, Qin L L, Shi L K, Zhao Y G, Tang Q B, Zhai C Y, Yu B H 2021 Opt. Commun. 493 127019Google Scholar

  • [1] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [2] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [3] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱. 物理学报, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [4] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211703
    [5] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [6] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [7] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [8] 张立民, 贾昌春, 王琦, 陈长进. 共面双对称条件下电子碰撞Ar原子单电离的一阶扭曲波Born近似. 物理学报, 2014, 63(15): 153401. doi: 10.7498/aps.63.153401
    [9] 童爱红, 冯国强. 分子双电离对激光偏振性的依赖关系. 物理学报, 2014, 63(2): 023303. doi: 10.7498/aps.63.023303
    [10] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [11] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [12] 孙世艳, 贾祥富, 苗向阳, 李霞, 马晓艳. 共面双对称几何条件下电子碰撞Na原子单电离的三重微分截面. 物理学报, 2012, 61(9): 093402. doi: 10.7498/aps.61.093402
    [13] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [14] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [15] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱. 物理学报, 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [16] 孙世艳, 贾祥富, 师文强, 李雄伟. 非共面几何条件下102eV电子碰撞He原子电离的全微分截面. 物理学报, 2008, 57(6): 3458-3463. doi: 10.7498/aps.57.3458
    [17] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究. 物理学报, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [18] 胡宏伟, 董晨钟, 师应龙. 单、双洞态镁离子的退激发及末电离态离子分布的研究. 物理学报, 2007, 56(7): 3887-3892. doi: 10.7498/aps.56.3887
    [19] 王振亚, W. Kamke, B. Kamke, I. V. Hertel. 苯基氰的单光子电离与碎解. 物理学报, 1991, 40(5): 698-702. doi: 10.7498/aps.40.698
    [20] 巫英坚, 李家明. 原子双光子电离截面的理论计算. 物理学报, 1985, 34(7): 933-940. doi: 10.7498/aps.34.933
计量
  • 文章访问数:  5248
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 修回日期:  2021-11-01
  • 上网日期:  2021-11-03
  • 刊出日期:  2022-02-20

/

返回文章
返回