搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Henry范围内粗糙孔隙中气体的等量吸附热与吸附选择性

康艳霜 王海军 孙宗利

引用本文:
Citation:

Henry范围内粗糙孔隙中气体的等量吸附热与吸附选择性

康艳霜, 王海军, 孙宗利

Isosteric heat and selectivity in adsorption of gases in rough pores: In Henry’s law region

Kang Yan-Shuang, Wang Hai-Jun, Sun Zong-Li
PDF
HTML
导出引用
  • Henry系数和等量吸附热是表征气体吸附中气-固作用的重要参数. 为了更好地理解气体在粗糙孔隙中的吸附特征, 首先构造并计算了矩形波纹粗糙狭缝及其外势分布. 进一步, 采用经典统计力学研究了狭缝中$ \text{H}_{2} $分子在低压范围内的纵向Henry系数和等量吸附热. 研究结果表明, 粗糙狭缝的几何形貌和基板间距等因素可对狭缝中气体的纵向Henry系数和等量吸附热产生显著的影响与调制作用. 进一步, 在Henry范围内计算了$ \text{CO}_{2}/ \text{H}_{2} $二元混合物气体在矩形波纹粗糙狭缝中的吸附选择性, 并研究了狭缝几何形貌的调制作用. 此外, 还研究了不同形状的凸起对气体吸附性质的影响. 相关的结果可为理解多孔材料中气体的吸附、分离和提纯等过程提供可靠的理论依据, 并有望为设计与研发新型纳米功能材料提供有益的参考.
    Henry constant and isosteric heat of adsorption are important parameters for characterizing the gas-solid interaction in an adsorption process. In order to better understand the adsorption behavior of gas in rough pores, we construct rough slit pores by using two rectangular corrugated substrates, and then calculate the potential profile in it. By utilizing classical statistical mechanics, the longitudinal Henry constant and isosteric heat of $ \text{H}_{2} $ are further calculated in the Henry region. The results suggest that both geometric morphology and pore width can significantly influence and modulate the longitudinal Henry constant and isosteric heat of the gas in the pore. Furthermore, the selectivity of adsorption in the binary $ \text{CO}_{2}/ \text{H}_{2} $ mixture is also calculated and investigated in the Henry region. In addition, the effects of corrugated substrates with different geometries on adsorption properties are also calculated and studied. The result can provide reliable theoretical basis for understanding the adsorption, separation and purification of the gas in porous materials, and it is also expected to provide helpful idea for designing and exploring new nano functional materials.
      通信作者: 王海军, whj@hbu.edu.cn ; 孙宗利, sunzl@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21503077)、中央高校基本科研业务费(批准号: 2020MS147)和河北省高等学校科学技术研究项目(批准号: QN2018119)资助的课题
      Corresponding author: Wang Hai-Jun, whj@hbu.edu.cn ; Sun Zong-Li, sunzl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21503077), the Fundamental Research Fund for the Central Universities of the Ministry of Education of China (Grant No. 2020MS147), and the Science and Technology Project of Hebei Education Department, China (Grant No. QN2018119)
    [1]

    Roque-Malherbe R M A 2018 Adsorption and Diffusion in Nanoporous Materials (2nd Ed.) (New York: CRC Press) pp51–77

    [2]

    Hill T L 1949 J. Chem. Phys. 17 520Google Scholar

    [3]

    Balbuena P B, Gubbins K E 1993 Langmuir 9 1801Google Scholar

    [4]

    Liu J, LeVan M D 2010 Carbon 48 3454Google Scholar

    [5]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interf. Sci. 324 15Google Scholar

    [6]

    Steele W 1973 Surf. Sci. 36 317Google Scholar

    [7]

    Maurer S, Mersmann A, Peukert W 2001 Chem. Eng. Sci. 56 3443Google Scholar

    [8]

    Jiang J W, Wagner N J, Sandler S I 2004 Phys. Chem. Chem. Phys. 6 4440Google Scholar

    [9]

    Do D D, Do H D, Wongkoblap A, Nicholson D 2008 Phys. Chem. Chem. Phys. 10 7293Google Scholar

    [10]

    Schindler B J, LeVan M D 2008 Carbon 46 644Google Scholar

    [11]

    Liu J, LeVan M D 2009 Carbon 47 3415Google Scholar

    [12]

    Do D D 1998 Adsorption Analysis: Equilibria and Kinetics (New Jersey: Imperial College Press) pp249–336

    [13]

    Wongkoblap A, Do D D 2007 Carbon 45 1527Google Scholar

    [14]

    Loi Q K, Horikawa T, Tan S, Prasetyo L, Do D D, Nicholson D 2020 Microporous Mesoporous Mater. 293 109762Google Scholar

    [15]

    Cracknell R F, Nicholson D, Quirke N 1993 Mol. Phys. 80 885Google Scholar

    [16]

    Cracknell R F, Nicholson D, Tennison S R, Bromhead J 1996 Carbon 2 193

    [17]

    Ben T, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L 2012 Energy Environ. Sci. 5 8370Google Scholar

    [18]

    Principe I A, Fletcher A J 2020 Adsorption 26 723Google Scholar

    [19]

    Tan Z M, Gubbins K E 1992 J. Phys. Chem. 96 845Google Scholar

    [20]

    Maddox M W, Sowers S L, Gubbins K E 1996 Adsorption 2 23Google Scholar

    [21]

    Peng X, Cao D P, Zhao J S 2009 Sep. Purif. Technol. 68 50Google Scholar

    [22]

    Kumar K V, Rodriguez-Reinoso F 2012 RSC Adv. 2 9671Google Scholar

    [23]

    Wu T H, Firoozabadi A 2018 J. Phys. Chem. C 122 20727Google Scholar

    [24]

    袁俊鹏, 刘秀英, 李晓东, 于景新 2021 物理学报 70 156801Google Scholar

    Yuan J P, Liu X Y, Li X D, Yu J X 2021 Acta Phys. Sin. 70 156801Google Scholar

    [25]

    Nicholson D 2002 Mol. Phys. 100 2151Google Scholar

    [26]

    Trinh T T, Vlugt T J H, Hägg M B, Bedeaux D, Kjelstrup S 2013 Front. Chem. 1 38

    [27]

    Zeng Y H, Xu H, Horikawa T, Do D D, Nicholson D 2018 J. Phys. Chem. C 122 24171Google Scholar

    [28]

    Prasetyo L, Do D D, Nicholson D 2018 Chem. Eng. J. 334 143Google Scholar

    [29]

    Steele W A 1974 The Interaction of Gases with Solid Surfaces (Oxford: Pergamon Press) pp317–320

    [30]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1987 Intermolecular Forces: Their Origin and Determination (Oxford: Science Publications) pp493–504

    [31]

    Poling B E, Prausnitz J M, O’Connell J P 2001 The Properties of Gases and Liquids (5th Ed.) (New York: McGraw-Hill) ppB.1–B.2

    [32]

    Ravikovitch P I, Nishnyakov A, Russo R, Neimark A V 2000 Langmuir 16 2311Google Scholar

    [33]

    Ravikovitch P I, Nishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [34]

    Frink L J D, van Swol F 1998 J. Chem. Phys. 108 5588Google Scholar

    [35]

    Ghatak C, Ayappa K G 2004 J. Chem. Phys. 120 9703Google Scholar

  • 图 1  (a)粗糙狭缝示意图, 绿色虚线包围的区域定义为狭缝中的I-类和II-类区域, 蓝色虚线表示气体分子可达空间的边界; (b)单个粗糙基板附近的气体分子的外势分布为$ V_{ \text{sub}}(y, z) $. 计算中取$ w_{1} = 1.36 $ nm, $ w_{2} = 2.04 $ nm, ${M} = 3 $

    Fig. 1.  (a) Sketch of the rough slit pore. The regions surrounded by the green dash lines are type-I and type-II regions in the rough pore, while the blue dashed line stands for the boundary of the accessible volume of the gas molecular. (b) Profile of external potential $ V_{ \text{sub}}(y, z) $ near a rough substrate with $ w_{1} = 1.36 $ nm, $ w_{2} = 2.04 $ nm and ${M} = 3$

    图 2  石墨表面上不同气体的(a)等量吸附热$ q_{ \text{st}}^{0} $和(b)内禀Henry系数$ K_{ \text{H}} $. 线: 本文结果; 符号: MC模拟结果[28]. 其中S为基板面积

    Fig. 2.  Isoteric heat of (a) adsorption $ q_{ \text{st}}^{0} $ and (b) inherent Henry constant $ K_{ \text{H}} $ of different gases on graphite surface. Lines: results of this work; symbols: results from MC simulations[28]. S is the area of substrate

    图 3  $ T = 298.15 $ K时, 光滑石墨狭缝中不同气体的$ q_{ \text{st}}^{0} $随缝宽H的变化. 线: 本文结果; 符号: MC模拟结果[10]

    Fig. 3.  Dependence of $ q_{ \text{st}}^{0} $ on pore width H for different gases in smooth graphite slit pore at $ T = 298.15 $ K. Lines: results of this work; symbols: results from MC simulations[10]

    图 4  $ w_{1} = 1.36 $ nm和$ H = 3.0 $ nm情况下, 凸起高度D对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Fig. 4.  Effect of D on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ w_{1} = 1.36 $ nm and $ H = 3.0 $ nm

    图 5  $ D = 0.34 $ nm和$ H = 1.5 $ nm情况下, 凸起宽度$ w_{1} $对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Fig. 5.  Effect of $ w_{1} $ on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 6  $ D = 0.34 $ nm和$ H = 1.5 $ nm情况下, 凸起间距$ w_{2} $对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Fig. 6.  Effect of $ w_{2} $ on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 7  $ w_{1}=w_{2}=1.36 $ nm的情况下, 基板间距H对粗糙狭缝中$ \rm{H}_{2} $$ K_{ \rm{L}} $$ q_{ \rm{st}}^{0} $的影响

    Fig. 7.  Effect of H on $ K_{ \rm{L}} $ and $ q_{ \rm{st}}^{0} $ of $ \rm{H}_{2} $ in rough slit pore in the case of $ w_{1}=w_{2}=1.36 $ nm

    图 8  不同条件下, 基板几何形貌对吸附选择性$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响 (a) $ w_{1} = 1.36 $ nm, $ H = 3.0 $ nm时, D$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响; (b) $ D = 0.34 $ nm, $ H = 1.5 $ nm时, $ w_{1} $$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响; (c) $ D = 0.34 $ nm, $ H = 1.5 $ nm时, $ w_{2} $$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响

    Fig. 8.  Effect of geometric morphology on the selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ in rough slit pore: (a) Effect of D on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ w_{1} = 1.36 $ nm and $ H = 3.0 $ nm; (b) effect of $ w_{1} $ on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ D = 0.34 $ nm and $ H = 1.5 $ nm; (c) effect of $ w_{2} $ on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 9  $w_{1} = w_{2} = 1.36$ nm的情况下, 基板间距H$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响

    Fig. 9.  Effect of H on selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ of $ \text{CO}_{2}/ \text{H}_{2} $ mixture confined in rough slit pore with $ w_{1} = w_{2} = 1.36 $ nm

    图 10  (a)—(c) 三角形和半圆形凸起对狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响. 图中, 黑线和红线分别为$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的结果, 实线和虚线分别为三角形凸起和半圆形凸起情况下的结果. (d)—(f)三角形和半圆形凸起对对$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响. 图中, 实线和虚线分别为三角形凸起和半圆形凸起情况下的结果. 需要说明的是, 在图(b)和图(e)中, 三角形凸起取$ w_{1} = 0.68 $ nm, 而在图(c)和图(f)中, 三角形凸起取$ w_{1} = 1.36 $ nm

    Fig. 10.  (a)–(c) Effect of geometry on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore with triangular and semicircular corrugated substrates. In these figures, black lines and red lines correspond to results for $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $, respectively. In addition, solid and dashed lines stand for results of triangular and semicircular condition, respectively. (d)–(f) Effect of geometry on selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ of $ \text{CO}_{2}/ \text{H}_{2} $ mixture in rough slit pore with triangular and semicircular corrugated substrates. In these figures, solid and dashed lines stand for results of triangular and semicircular condition, respectively. It should be noted that in panels (b) and (e), $ w_{1} = 0.68 $ nm is set for the triangular corrugated substrate, while in panels (c) and (f), it is set as $ w_{1} = 1.36 $ nm

    表 1  不同气体分子的LJ模型参数

    Table 1.  LJ model parameters of different gas molecular

    分子种类 $\sigma_{\text{gg}}$/nm $\varepsilon_{\text{gg}}/k_\text{B}$/K $\sigma_{\text{gs}}$/nm $\varepsilon_{\text{gs}}/k_\text{B}$/K 文献
    He 0.2560 10.21 0.2980 16.90 [29]
    Ne 0.2780 34.90 0.3080 31.26 [30]
    Ar 0.3405 119.80 0.3393 57.92 [30]
    Kr 0.3685 164.40 0.3533 67.85 [30]
    Xe 0.4100 221.00 0.3740 78.66 [30]
    $\text{H}_{2}$ 0.2830 59.70 0.3105 40.87 [31]
    $\text{N}_{2}$ 0.3575 94.45 0.3494 53.22 [32]
    $\text{CH}_{4}$ 0.3820 148.20 0.3600 64.40 [33]
    $\text{CO}_{2}$ 0.3454 235.90 0.3430 81.50 [32]
    下载: 导出CSV
  • [1]

    Roque-Malherbe R M A 2018 Adsorption and Diffusion in Nanoporous Materials (2nd Ed.) (New York: CRC Press) pp51–77

    [2]

    Hill T L 1949 J. Chem. Phys. 17 520Google Scholar

    [3]

    Balbuena P B, Gubbins K E 1993 Langmuir 9 1801Google Scholar

    [4]

    Liu J, LeVan M D 2010 Carbon 48 3454Google Scholar

    [5]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interf. Sci. 324 15Google Scholar

    [6]

    Steele W 1973 Surf. Sci. 36 317Google Scholar

    [7]

    Maurer S, Mersmann A, Peukert W 2001 Chem. Eng. Sci. 56 3443Google Scholar

    [8]

    Jiang J W, Wagner N J, Sandler S I 2004 Phys. Chem. Chem. Phys. 6 4440Google Scholar

    [9]

    Do D D, Do H D, Wongkoblap A, Nicholson D 2008 Phys. Chem. Chem. Phys. 10 7293Google Scholar

    [10]

    Schindler B J, LeVan M D 2008 Carbon 46 644Google Scholar

    [11]

    Liu J, LeVan M D 2009 Carbon 47 3415Google Scholar

    [12]

    Do D D 1998 Adsorption Analysis: Equilibria and Kinetics (New Jersey: Imperial College Press) pp249–336

    [13]

    Wongkoblap A, Do D D 2007 Carbon 45 1527Google Scholar

    [14]

    Loi Q K, Horikawa T, Tan S, Prasetyo L, Do D D, Nicholson D 2020 Microporous Mesoporous Mater. 293 109762Google Scholar

    [15]

    Cracknell R F, Nicholson D, Quirke N 1993 Mol. Phys. 80 885Google Scholar

    [16]

    Cracknell R F, Nicholson D, Tennison S R, Bromhead J 1996 Carbon 2 193

    [17]

    Ben T, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L 2012 Energy Environ. Sci. 5 8370Google Scholar

    [18]

    Principe I A, Fletcher A J 2020 Adsorption 26 723Google Scholar

    [19]

    Tan Z M, Gubbins K E 1992 J. Phys. Chem. 96 845Google Scholar

    [20]

    Maddox M W, Sowers S L, Gubbins K E 1996 Adsorption 2 23Google Scholar

    [21]

    Peng X, Cao D P, Zhao J S 2009 Sep. Purif. Technol. 68 50Google Scholar

    [22]

    Kumar K V, Rodriguez-Reinoso F 2012 RSC Adv. 2 9671Google Scholar

    [23]

    Wu T H, Firoozabadi A 2018 J. Phys. Chem. C 122 20727Google Scholar

    [24]

    袁俊鹏, 刘秀英, 李晓东, 于景新 2021 物理学报 70 156801Google Scholar

    Yuan J P, Liu X Y, Li X D, Yu J X 2021 Acta Phys. Sin. 70 156801Google Scholar

    [25]

    Nicholson D 2002 Mol. Phys. 100 2151Google Scholar

    [26]

    Trinh T T, Vlugt T J H, Hägg M B, Bedeaux D, Kjelstrup S 2013 Front. Chem. 1 38

    [27]

    Zeng Y H, Xu H, Horikawa T, Do D D, Nicholson D 2018 J. Phys. Chem. C 122 24171Google Scholar

    [28]

    Prasetyo L, Do D D, Nicholson D 2018 Chem. Eng. J. 334 143Google Scholar

    [29]

    Steele W A 1974 The Interaction of Gases with Solid Surfaces (Oxford: Pergamon Press) pp317–320

    [30]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1987 Intermolecular Forces: Their Origin and Determination (Oxford: Science Publications) pp493–504

    [31]

    Poling B E, Prausnitz J M, O’Connell J P 2001 The Properties of Gases and Liquids (5th Ed.) (New York: McGraw-Hill) ppB.1–B.2

    [32]

    Ravikovitch P I, Nishnyakov A, Russo R, Neimark A V 2000 Langmuir 16 2311Google Scholar

    [33]

    Ravikovitch P I, Nishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [34]

    Frink L J D, van Swol F 1998 J. Chem. Phys. 108 5588Google Scholar

    [35]

    Ghatak C, Ayappa K G 2004 J. Chem. Phys. 120 9703Google Scholar

  • [1] 张孝悦, 徐华锋, 陈婉娜, 周农, 吴宏伟. 基于定向声源的局域型声学斯格明子模式的选择性激发. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241286
    [2] 张杰, 陈爱喜, 彭泽安. 基于双原子超-亚辐射态选择性驱动的空间定向关联辐射. 物理学报, 2024, 73(14): 144202. doi: 10.7498/aps.73.20240521
    [3] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211815
    [4] 肖友鹏, 高超, 王涛, 周浪. 载流子选择性接触:高效硅太阳电池的选择. 物理学报, 2017, 66(15): 158801. doi: 10.7498/aps.66.158801
    [5] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究. 物理学报, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [6] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [7] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [8] 崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计. 物理学报, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [9] 董长胜, 谷雨, 钟敏霖, 马明星, 黄婷, 刘文今. 激光熔覆铜锰合金选择性脱合金制备纳米多孔涂层的研究. 物理学报, 2012, 61(9): 094211. doi: 10.7498/aps.61.094211
    [10] 许裕栗, 陈学谦, 陈厚样, 徐首红, 刘洪来. 接枝聚合物对小分子的选择性吸附研究. 物理学报, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [11] 袁铮, 刘慎业, 曹柱荣, 李云峰, 陈韬, 黎航, 张海鹰, 陈铭. 金阴极的选择性光电效应. 物理学报, 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [12] 何济洲, 贺兵香. 考虑透射概率的能量选择性电子热泵. 物理学报, 2010, 59(4): 2345-2349. doi: 10.7498/aps.59.2345
    [13] 蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷. 选择性激光烧结成型件密度的支持向量回归预测. 物理学报, 2009, 58(13): 8-S14. doi: 10.7498/aps.58.8
    [14] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律. 物理学报, 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [15] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [16] 蔡俊伟, 胡寿松, 陶洪峰. 基于选择性支持向量机集成的混沌时间序列预测. 物理学报, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [17] 闫隆, 张永平, 彭毅萍, 庞世谨, 高鸿钧. Ge在Si(111)7×7表面的选择性吸附. 物理学报, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [18] 戴长建, 于长江. 脉冲激光场选择性光电离同位素原子. 物理学报, 1994, 43(3): 356-368. doi: 10.7498/aps.43.356
    [19] 刘厚祥, 李昭临, 李书涛, 韩景诚, 吴存恺. 甲醛的态选择性多光子电离研究. 物理学报, 1988, 37(3): 470-474. doi: 10.7498/aps.37.470
    [20] 殷志强. 溅射Al-C-O/Al太阳选择性吸收涂层. 物理学报, 1986, 35(10): 1369-1373. doi: 10.7498/aps.35.1369
计量
  • 文章访问数:  5794
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-03-10
  • 上网日期:  2022-07-02
  • 刊出日期:  2022-07-20

/

返回文章
返回