搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于化学发光法的高纯气体中ppb量级NOx浓度测量

张猛 彭志敏 杨乾锁 丁艳军 杜艳君

引用本文:
Citation:

基于化学发光法的高纯气体中ppb量级NOx浓度测量

张猛, 彭志敏, 杨乾锁, 丁艳军, 杜艳君

Measurement of NOx concentration at ppb level in high-purity gases based on chemiluminescence method

Zhang Meng, Peng Zhi-Min, Yang Qian-Suo, Ding Yan-Jun, Du Yan-Jun
PDF
HTML
导出引用
  • 高纯气体在半导体器件制作及燃料电池等行业应用广泛, 但其杂质气体直接对加工精度及效果产生显著影响, 因此对关键痕量杂质气体进行浓度诊断尤为必要. 本文基于化学发光光谱理论和氮氧化物催化转化机理, 设计了一套痕量NO/NOx同步高精度测量系统, 通过标定实验可知, 该测量系统具有高线性度(R2 = 0.99967)、高灵敏度、低检测下限(约25 ppt, 1 ppt = 10–12)、易操作性等优势; 同时, 综合考虑不同背景气体对荧光、磷光的淬灭效应, 建立不同高纯气体中NOx测量方法, 并利用该探测系统对实验室常用4种高纯气体(Ar, O2, CO2, N2)中ppb量级的氮氧化物进行测量, 结果表示CO2中的NO含量最高, 约为9 ppb (1 ppb = 10–9), 其他高纯气体中的NO含量较低, 仅有0—4 ppb, 4种高纯气体的NO2含量均较低(<6 ppb); 最后结合气体制备及提纯方式对高纯气体中杂质NOx含量进行评价及分析, 旨在为燃料电池、半导体器件制备等尖端科技领域提供可靠的杂质气体成分诊断方法和数据基础.
    High-purity gases are widely used in semiconductor device manufacturing and fuel cell industries. However, the impurities have a significant influence on the processing accuracy directly. Thus, it is particularly necessary to carry out the concentration diagnosis of key trace impurity gases. In this work, an integrated system for the simultaneous detection of trace NO/NOx is designed based on the chemiluminescence spectrum theory and the catalytic conversion mechanism of nitrogen oxides. The test experiments reveal that the measurement system has the advantages of high linearity (R2 = 0.99967), high sensitivity, low detection limit (~25 ppt), and easy operation. Subsequently, the measurement method for NOx with different high-purity gases are established considering the quenching effects of different background gases on fluorescence and phosphorescent. The detection system is then used to measure the ppb-level NOx impurities in four commonly used high-purity gases (Ar, O2, CO2, N2) in the laboratory. The results show that the NO impurity in CO2 gas is the highest, approximately 9 ppb,but relatively low, 0–4 ppb, in the other high-purity gases. The NO2 impurities in all four high-purity gases are very low (< 6 ppb). Finally, the NOx impurity content values in high-purity gases are evaluated and analyzed based on the gas preparation and purification approach. The aim of the work is to provide a reliable diagnostic approach and data basis of the impurity composition for the fuel cell, semiconductor and other cutting-edge technological fields.
      通信作者: 杜艳君, YanjunDu@ncepu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2006002)和华能集团总部科技项目‘基础能源科技研究专项’(批准号: HNKJ20-H50)资助的课题.
      Corresponding author: Du Yan-Jun, YanjunDu@ncepu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2006002) and Huaneng Group Headquarters Technology Project 'Basic Energy Technology Research Project'(Grant No. HNKJ20-H50).
    [1]

    Funke H H, Grissom B L, McGrew C E, Raynor M W 2003 Rev. Sci. Instrum. 74 3909Google Scholar

    [2]

    单静, 王莹, 王杰, 靳鹏杰, 吉雪霞 2020 低温与特气 38 32Google Scholar

    Shan J, Wang Y, Wang J, Jin P J, Ji X X 2020 Low Temper. Speci. Gas. 38 32Google Scholar

    [3]

    Z 2021 Nat. Gas Ind. 41 115 (in Chinese) [潘义, 邓凡锋, 王维康, 杨嘉伟, 张婷, 林俊杰, 龙舟, 姚伟民, 方正 2021 天然气工业 41 115]

    Pan Y, Deng F F, Wang W K, Yang J W, Zhang T, Lin J J, Long Z, Yao W M, Fang

    [4]

    Sethuraman V A, Weidner J W 2010 Electrochim. Acta 55 5683Google Scholar

    [5]

    Myrberg T, Jacob A P, Nur O, Friesel M, Willander M, Patel C J, Campidelli Y, Hernandez C, Kermarrec O, Bensahel D 2004 J. Mater Sci. Mater. Electron. 15 411Google Scholar

    [6]

    牛丽红, 李胜, 于世林 2017 广东化工 44 117Google Scholar

    Niu L H, Li S, Yu S L 2017 Guangzhou Chem. Indust. 44 117Google Scholar

    [7]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [8]

    Chao X, Jeffries J B, Hanson R K 2011 Appl. Phys. B 106 987Google Scholar

    [9]

    孙逊运 1988 色谱 6 334

    Sun X Y 1988 Chin. J. Chromatogr. 6 334

    [10]

    Li H, Liu W Q, Kan R F 2019 Rev. Sci. Instrum. 90 046103Google Scholar

    [11]

    Dickerson R R, Delany A C, Wartburg A F 1984 Rev. Sci. Instrum. 55 1995Google Scholar

    [12]

    Delany A C, Dickerson R R, Melchior F L, Wartburg A F 1982 Rev. Sci. Instrum. 53 1899Google Scholar

    [13]

    Johnston H S, Crosby H J 1954 J. Phys. Chem. C 22 689Google Scholar

    [14]

    Douglas A E, Huber K P 1965 Can. J. Phys. 43 74Google Scholar

    [15]

    Clough P N, Thrush B A 1967 J. Chem. Soc. , Faraday trans. 63 915Google Scholar

    [16]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [17]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [18]

    Kliner D A V, Daube B C, Burley J D, Wofsy S C 1997 J. Geophys. Res. Atmos. 102 10759

    [19]

    Day D A, Dillon M B, Wooldridge P J, Thornton J A, Rosen R S, Wood E C, Cohen R C 2003 J. Geophys. Res. 108 4501Google Scholar

    [20]

    McClenny W A, Williams E J, Cohen R C, Stutz J 2002 J. Air. Waste Manag. Assoc. 52 542Google Scholar

    [21]

    Putluru S S R, Schill L, Jensen A D, Fehrmann R S N 2015 Appl Catal. B 165 628

    [22]

    Bollinger M J, Sievers R E, Fahey D W, Fehsenfeld F C 1983 Anal. Chem. 55 1980Google Scholar

    [23]

    Yagi S, Tanaka M 1979 J. Phys. D. Appl. Phys. 12 1509Google Scholar

    [24]

    Thrush B A 1973 J. Phys. Chem. C 58 5191Google Scholar

    [25]

    Smith W H, Liszt H S 1971 J. Quant. Spectrosc. Ra. 11 45Google Scholar

    [26]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 2013 1Google Scholar

    [27]

    Zabielski M F, Seery D J, Dodge L G 1984 Environ. Sci. Technol. 18 88Google Scholar

    [28]

    Fontijn A, Meyer C B, Schiff H I 1964 J. Chem. Phys. 40 64Google Scholar

    [29]

    Moonen P C, Cape J N, Storeton-West R L, McColm R 1998 J. Atmos. Chem. 29 299Google Scholar

    [30]

    Mehrabzadeh A A, O'Brien R J, Hard T M 1983 Anal. Chem. 55 1660Google Scholar

    [31]

    Tidona R J, Nizami A A, Cernansky N P 1988 JAPCA 38 806Google Scholar

    [32]

    Nakayama T, Ide T, Taketani F, Kawai M, Takahashi K, Matsumi Y 2008 Atmospheric Environ. 42 1995Google Scholar

  • 图 1  NO与O3化学发光反应能级跃迁原理示意图

    Fig. 1.  Schematic diagram of chemiluminescence reaction level transition of NO and O3.

    图 2  化学发光测量系统装置示意图. V为可调节脉冲型高压电源; MFC为流量控制计; CL为化学发光; PMT为光电倍增管; T0为NO测量模式通道; T1为NO2测量模式通道

    Fig. 2.  Schematic diagram of chemiluminescence measurement system. V is adjustable pulse high voltage power supply; MFC is flow control meter; CL is chemiluminescence; PMT is photomultiplier tube, T0 is NO measurement mode channel; T1 is NO2 measurement mode channel.

    图 3  化学发光探测系统对63.3 ppb NO2和39 ppb NO混合标气的动态测量结果

    Fig. 3.  Dynamic measurement results of 63.3 ppb NO2 and 39 ppb NO mixed standard gas by chemiluminescence detection system.

    图 4  不同NO2标气浓度测量结果 (a)不同NO2浓度下对应5个周期的原始测量信号; (b)不同NO2标气浓度的电压信号及其线性拟合曲线

    Fig. 4.  Different NO2 standard gas concentration measurement: (a) Original measurement signals corresponding to 5 cycles at different NO2 concentrations; (b) voltage signals of different NO2 gas concentrations and their linear fitting curves.

    图 5  “零气”和空气源时测量系统电压信号的Allan标准差

    Fig. 5.  Allan standard deviation of the voltage signal of zero gas and air for the measurement system.

    图 6  第三气体的相对淬灭系数[31]

    Fig. 6.  Relative quenching coefficient of the third gas[31] .

    图 7  空气、“零气”及高纯气体中NOx浓度测量

    Fig. 7.  Measurement of NOx concentration in air, zero gas and high purity gas.

    表 1  不同组分高纯气体的NOx转换系数及其测量结果修正值

    Table 1.  NOx conversion coefficient of different high-purity gas components and modification of measurement results.

    高纯气体
    组分
    线性
    系数(m)
    $I_{\rm N_2}/I_{\rm M}$浓度修正值
    (ppb, 高纯气体)
    NONO2
    O20.1151.115~1.4~2.9
    CO21.0472.047~ 8.9~2.3
    Ar–0.480.73~0.5~5.2
    N201~3.9~4.4
    注: 相对淬灭系数Rm可以用公式Rm = 1+ m*d{M}描述, 式中m为线性拟合系数, {M}为M的物质的量的比. 具体公式推导见文献[31].
    下载: 导出CSV
  • [1]

    Funke H H, Grissom B L, McGrew C E, Raynor M W 2003 Rev. Sci. Instrum. 74 3909Google Scholar

    [2]

    单静, 王莹, 王杰, 靳鹏杰, 吉雪霞 2020 低温与特气 38 32Google Scholar

    Shan J, Wang Y, Wang J, Jin P J, Ji X X 2020 Low Temper. Speci. Gas. 38 32Google Scholar

    [3]

    Z 2021 Nat. Gas Ind. 41 115 (in Chinese) [潘义, 邓凡锋, 王维康, 杨嘉伟, 张婷, 林俊杰, 龙舟, 姚伟民, 方正 2021 天然气工业 41 115]

    Pan Y, Deng F F, Wang W K, Yang J W, Zhang T, Lin J J, Long Z, Yao W M, Fang

    [4]

    Sethuraman V A, Weidner J W 2010 Electrochim. Acta 55 5683Google Scholar

    [5]

    Myrberg T, Jacob A P, Nur O, Friesel M, Willander M, Patel C J, Campidelli Y, Hernandez C, Kermarrec O, Bensahel D 2004 J. Mater Sci. Mater. Electron. 15 411Google Scholar

    [6]

    牛丽红, 李胜, 于世林 2017 广东化工 44 117Google Scholar

    Niu L H, Li S, Yu S L 2017 Guangzhou Chem. Indust. 44 117Google Scholar

    [7]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [8]

    Chao X, Jeffries J B, Hanson R K 2011 Appl. Phys. B 106 987Google Scholar

    [9]

    孙逊运 1988 色谱 6 334

    Sun X Y 1988 Chin. J. Chromatogr. 6 334

    [10]

    Li H, Liu W Q, Kan R F 2019 Rev. Sci. Instrum. 90 046103Google Scholar

    [11]

    Dickerson R R, Delany A C, Wartburg A F 1984 Rev. Sci. Instrum. 55 1995Google Scholar

    [12]

    Delany A C, Dickerson R R, Melchior F L, Wartburg A F 1982 Rev. Sci. Instrum. 53 1899Google Scholar

    [13]

    Johnston H S, Crosby H J 1954 J. Phys. Chem. C 22 689Google Scholar

    [14]

    Douglas A E, Huber K P 1965 Can. J. Phys. 43 74Google Scholar

    [15]

    Clough P N, Thrush B A 1967 J. Chem. Soc. , Faraday trans. 63 915Google Scholar

    [16]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [17]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [18]

    Kliner D A V, Daube B C, Burley J D, Wofsy S C 1997 J. Geophys. Res. Atmos. 102 10759

    [19]

    Day D A, Dillon M B, Wooldridge P J, Thornton J A, Rosen R S, Wood E C, Cohen R C 2003 J. Geophys. Res. 108 4501Google Scholar

    [20]

    McClenny W A, Williams E J, Cohen R C, Stutz J 2002 J. Air. Waste Manag. Assoc. 52 542Google Scholar

    [21]

    Putluru S S R, Schill L, Jensen A D, Fehrmann R S N 2015 Appl Catal. B 165 628

    [22]

    Bollinger M J, Sievers R E, Fahey D W, Fehsenfeld F C 1983 Anal. Chem. 55 1980Google Scholar

    [23]

    Yagi S, Tanaka M 1979 J. Phys. D. Appl. Phys. 12 1509Google Scholar

    [24]

    Thrush B A 1973 J. Phys. Chem. C 58 5191Google Scholar

    [25]

    Smith W H, Liszt H S 1971 J. Quant. Spectrosc. Ra. 11 45Google Scholar

    [26]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 2013 1Google Scholar

    [27]

    Zabielski M F, Seery D J, Dodge L G 1984 Environ. Sci. Technol. 18 88Google Scholar

    [28]

    Fontijn A, Meyer C B, Schiff H I 1964 J. Chem. Phys. 40 64Google Scholar

    [29]

    Moonen P C, Cape J N, Storeton-West R L, McColm R 1998 J. Atmos. Chem. 29 299Google Scholar

    [30]

    Mehrabzadeh A A, O'Brien R J, Hard T M 1983 Anal. Chem. 55 1660Google Scholar

    [31]

    Tidona R J, Nizami A A, Cernansky N P 1988 JAPCA 38 806Google Scholar

    [32]

    Nakayama T, Ide T, Taketani F, Kawai M, Takahashi K, Matsumi Y 2008 Atmospheric Environ. 42 1995Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [3] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [4] 刘丹丹, 黄印博, 孙宇松, 卢兴吉, 曹振松. 对流层顶高对拉萨地区温室气体柱浓度反演的影响. 物理学报, 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431
    [5] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [6] 郑丽霞, 吴金, 张秀川, 涂君虹, 孙伟锋, 高新江. InGaAs单光子探测器传感检测与淬灭方式. 物理学报, 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [7] 张锐, 赵学玒, 赵迎, 王喆, 汪曣. 激光器特性在痕量气体检测中的影响. 物理学报, 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [8] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究. 物理学报, 2013, 62(24): 249301. doi: 10.7498/aps.62.249301
    [9] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [10] 黄伟其, 吕泉, 王晓允, 张荣涛, 于示强. 不同气体氛围下硅量子点的结构及其发光机理. 物理学报, 2011, 60(1): 017805. doi: 10.7498/aps.60.017805
    [11] 宋渤, 王晓坡, 吴江涛, 刘志刚. 稀有气体纯质热物理性质的预测. 物理学报, 2011, 60(3): 033401. doi: 10.7498/aps.60.033401
    [12] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤. 物理学报, 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
    [13] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [14] 秦 莉, 张喜田, 梁 瑶, 张 锷, 高 红, 张治国. 氧化锌微米花的共振拉曼和“负热淬灭”效应. 物理学报, 2006, 55(6): 3119-3123. doi: 10.7498/aps.55.3119
    [15] 张小俊, 王劲松, 许祝安, 焦正宽, 张其瑞. Cd对CaLaBaCu3Oy体系超导电性的淬灭作用. 物理学报, 1995, 44(8): 1279-1285. doi: 10.7498/aps.44.1279
    [16] 方炎, 魏凤文, 王亚利, 于永澄. 银微粒表面吸附若丹明B分子荧光增强和淬灭的研究. 物理学报, 1994, 43(4): 555-559. doi: 10.7498/aps.43.555
    [17] 王振林, 高瞻, 李振亚. 自旋S=1淬灭键稀释蜂窝格子伊辛模型. 物理学报, 1991, 40(9): 1525-1532. doi: 10.7498/aps.40.1525
    [18] 潘多海, 苗润才, 李秀英, 张鹏翔. SERS活性表面荧光增强或淬灭的机制研究. 物理学报, 1989, 38(6): 965-972. doi: 10.7498/aps.38.965
    [19] 邹元燨, 汪光裕. 电子顺磁共振“AsGa”的光淬灭行为与EL2亚稳态机理. 物理学报, 1988, 37(7): 1197-1202. doi: 10.7498/aps.37.1197
    [20] 李德平, 仇士华. 盖格计数管中淬滅气体之分解. 物理学报, 1958, 14(2): 136-138. doi: 10.7498/aps.14.136
计量
  • 文章访问数:  4876
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-08
  • 上网日期:  2022-06-23
  • 刊出日期:  2022-07-05

/

返回文章
返回