搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti2AlNb合金的嵌入原子势

刘杰 刘艳侠

引用本文:
Citation:

Ti2AlNb合金的嵌入原子势

刘杰, 刘艳侠

Embedded-atom method potential for Ti2AlNb alloys

Liu Jie, Liu Yan-Xia
PDF
HTML
导出引用
  • 分子动力学模拟是一种行之有效的计算机模拟方法; 然而, 由于缺少合适的多元合金原子间势, 因而限制了分子动力学模拟的应用. 多元合金原子间势的开发一直具有挑战性. 本文在嵌入原子势模型的框架下, 提出一种适用于三元有序合金的原子间势构建方法, 并开发了适用于原子尺度力学行为模拟的Ti2AlNb合金新型原子间势. 该势能够很好地再现B2-Ti2AlNb的弹性常数、未弛豫的空位形成能、置换原子形成能、换位原子形成能、表面能和三种有序构型(B2相、D019相、O相)在不同体积下的内聚能. 为了进一步检验势函数, 计算了B2相的E-V曲线, 结果与Rose曲线符合得很好; 利用分子动力学模拟研究了B2相的熔化转变过程, 结果大致反映了实验情况. 本文的工作一方面为开发多元合金原子间势提供一种途径, 另一方面为模拟计算Ti2AlNb合金的工作者提供一种选择.
    Molecular dynamics simulation is an effective computer simulation method. However, owing to the lack of suitable interatomic potential of multicomponent alloys, the application of molecular dynamics simulation is limited. The development of interatomic potential of multicomponent alloys has always been challenging. In this work, under the framework of EAM model, a construction method of interatomic potential suitable for ternary ordered alloys is proposed, and a new interatomic potential of Ti2AlNb alloys suitable for atomic-scale mechanical behavior simulation is developed. The potential can well reproduce the elastic constants of B2-Ti2AlNb, unrelaxation vacancy formation energy, substitutional atom formation energy, transposition atom formation energy, surface energy and cohesive energy of three ordered phase (B2, D019 and O phases ) in different volumes. To further test the potential functions, 1) the E-V curve of B2 phase is calculated, and the result is well consistent with Rose curve; 2) the melting transformation process of B2 phase is studied by molecular dynamics simulation, and the results roughly reflect the experimental fact. The present work provides a way to develop the interatomic potential of multicomponent alloys, and a option for the workers who simulate and calculate the Ti2AlNb alloys as well.
      通信作者: 刘艳侠, ldlyx@163.com
    • 基金项目: 国家重点研发计划 (批准号: 2016YFB0701304) 资助的课题.
      Corresponding author: Liu Yan-Xia, ldlyx@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0701304).
    [1]

    Deringer V, Csanyi G 2017 Phys. Rev. B 95 094203Google Scholar

    [2]

    Alizadeh Z, Mohammadizadeh M R 2019 Physica C 558 7Google Scholar

    [3]

    Jordan M I, Mitchell T M 2015 Science 349 255Google Scholar

    [4]

    Smith J S, Nebgen B, Mathew N, Chen J, Lubbers N, Burakovsky L, Tretiak S, Nam H A, Germann T, Fensin S, Barros K 2021 Nat. Commun. 12 1257Google Scholar

    [5]

    Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135Google Scholar

    [6]

    Kumpfert J 2001 Adv. Eng. Mater. 3 851Google Scholar

    [7]

    Boehlert C J, Majumdar B S 1999 Metall. Mater. Trans. A 30 2305Google Scholar

    [8]

    冯艾寒, 李渤渤, 沈军 2011 材料与冶金学报 10 30Google Scholar

    Feng A H, Li B B, Shen J 2011 J. Mater. Metall. 10 30Google Scholar

    [9]

    Gogia T K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M 1998 Intermetallics 6 741Google Scholar

    [10]

    Banerjee D, Gogia A K, Nandi T K, Joshi V A 1988 Acta Metall. 36 871Google Scholar

    [11]

    Pathak A, Singh A K 2015 Solid State Commun. 204 9Google Scholar

    [12]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [13]

    Cheng C, Ma Y L, Bao Q L, Wang X, Sun J X, Zhou G, Wang H, Liu Y X, Xu D S 2019 Comput. Mater. Sci. 173 109432Google Scholar

    [14]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [15]

    Voter A F 1994 Intermetallic Compounds (New York: Wiley) pp77—80

    [16]

    Mishin Y, Mehl M J 2002 Phys. Rev. B 65 224114Google Scholar

    [17]

    Ravi C, Vajeeston P, Mathijaya S, Asokamani R 1999 Phys. Rev. B:Condens. Matter. 60 683Google Scholar

    [18]

    Kittel C 1976 Introduction to Solid State Physics (New Jersey: John Wiley & Sons) pp57–58

    [19]

    Weast R C 1984 Handbook of Chemistry and Physics (Boca Raton: Chemical Rubber) p64

    [20]

    Johnson R A 1972 Phys. Rev. B 6 2094Google Scholar

    [21]

    Oh D J, Johnson R A 2011 Mater. Res. 3 471Google Scholar

    [22]

    Bolef D I 1961 Appl. Phys. 32 100Google Scholar

    [23]

    Agrawal A, Mishra R, Ward L, Flores K M, Windl W 2013 Modell. Simul. Mater. Sci. Eng. 21 085001Google Scholar

    [24]

    Farkas D 1999 Modell. Simul Mater. Sci. Eng. 4 23Google Scholar

    [25]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963Google Scholar

    [26]

    Julius C S, Martin P 2006 J. Phase Equilib. Diffus. 27 255Google Scholar

    [27]

    Vasudevan V K, Yang J, Woodfield A P 1996 Scr. Mater. 35 1033Google Scholar

  • 图 1  Ti2AlNb的EAM势 (a) 电子密度分布函数; (b) 嵌入能函数; (c) 同种原子间的对势; (d) 异种原子间的对势

    Fig. 1.  EAM potential for Ti2AlNb: (a) Electron density function; (b) embedding energy function; (c) pair potentials between same types of atoms; (d) pair potentials between different types of atoms.

    图 2  B2-Ti2AlNb单空位形成能与双空位形成能

    Fig. 2.  Mono-vacancy formation energies and di-vacancy formation energies for B2-Ti2AlNb.

    图 3  B2-Ti2AlNb原子位置换位示意图

    Fig. 3.  Atom position transposition diagram for B2-Ti2AlNb.

    图 4  B2-Ti2AlNb置换原子形成能的误差

    Fig. 4.  Deviations of substitutional atom formation energies for B2-Ti2AlNb.

    图 5  B2-Ti2AlNb换位原子形成能的误差

    Fig. 5.  Deviations of transposition atom formation energies for B2-Ti2AlNb.

    图 6  B2-Ti2AlNb的E-V曲线与Rose曲线

    Fig. 6.  E-V curve and Rose curve for B2-Ti2AlNb.

    图 7  Ti2AlNb合金的E-V曲线 (a) B2相; (b) D019相; (c) O相

    Fig. 7.  E-V curve of Ti2AlNb alloys: (a) B2 phase; (b) D019 phase; (c) O phase.

    图 8  B2相的每个原子的体积随温度的变化

    Fig. 8.  Volume variation of each atom for B2 phase as functions of temperature.

    图 9  B2相随温度变化的截面快照 (a) 296 K; (b) 754 K; (c) 1428 K; (d) 1390 K; (e) 1449 K; (f) 1728 K

    Fig. 9.  Cross-section snapshots for B2 phase as functions of temperature: (a) 296 K; (b) 754 K; (c) 1428 K; (d) 1390 K; (e) 1449 K; (f) 1728 K.

    表 1  B2-Ti2AlNb的晶格常数和生成焓(单位: eV)

    Table 1.  Lattice constants and formation enthalpy for B2-Ti2AlNb (in eV).

    methodPhaseLattice parameters/Å$ {E}_{\mathrm{f}} $
    abc
    Experimental[17]B23.2798
    D0195.79984.6996
    O6.08939.56944.6666
    ABINIT[11]B23.274–0.127
    D0195.7014.620–0.194
    O5.9999.5554.639–0.203
    This workB23.237–0.284
    D0195.8724.708–0.311
    O6.0549.5274.676–0.350
    下载: 导出CSV

    表 2  单质Ti, Al, Nb的内聚能(单位: eV)

    Table 2.  Cohesive energies for Ti, Al and Nb (in eV)

    ElementStructure$ {E}_{\mathrm{c}} $
    Experimental[18,19]TiHcp–4.85
    AlFcc–3.39
    NbBcc–7.47
    This workTiHcp–4.85
    AlFcc–3.39
    NbBcc–7.47
    下载: 导出CSV

    表 3  Ti2AlNb合金EAM势的拟合参数

    Table 3.  Fitting parameters of EAM potential for Ti2AlNb alloys.

    $ \phi \left({r}_{\mathrm{T}\mathrm{i}\mathrm{A}\mathrm{l}}\right) $$ \phi \left({r}_{\mathrm{T}\mathrm{i}\mathrm{N}\mathrm{b}}\right) $$ \phi \left({r}_{\mathrm{N}\mathrm{b}\mathrm{A}\mathrm{l}}\right) $
    ParametervalueParametervalueParametervalue
    $ \alpha $–2.1129$ \alpha $–4.2151 $ \alpha $–0.2797
    $ \beta $–1.3742$ \beta $–6.6808$ \beta $–2.5122
    $ \gamma $0.2705$ \gamma $1.4339$ \gamma $1.6140
    $ \epsilon $0.1758$ \epsilon $–0.0008$ \epsilon $0.1140
    $ \sigma $–2.3191$ \sigma $–1.4062$ \sigma $–1.6132
    $ \mu $0.0516$ \mu $0.2694$ \mu $0.4012
    下载: 导出CSV

    表 4  B2-Ti2AlNb的弹性常数(单位: GPa)

    Table 4.  Elastic constants for B2-Ti2AlNb (in GPa).

    C11C33C44C66C12C13
    ABINIT[11]13681100
    DFT153.20147.8369.3671.86133.4297.62
    This work195.82178.9564.3566.83136.92127.04
    下载: 导出CSV

    表 5  B2-Ti2AlNb单空位形成能和双空位形成能(单位: eV)

    Table 5.  Mono-vacancy formation energies and di-vacancy formation energies for B2-Ti2AlNb (in eV).

    DFTThis workThis-lmpEAM-fa
    $ {E}_{\mathrm{v}}^{\mathrm{f}} $Ti2.8792.2832.2831.343
    Al2.8593.2653.2651.391
    Nb2.1941.7631.6574.919
    $ {E}_{\mathrm{d}}^{\mathrm{f}} $TiTi-15.4544.5034.4982.562
    TiTi-25.8544.5394.5332.777
    TiTi-35.6884.5704.5672.724
    TiAl-15.6235.4345.4344.014
    TiNb-14.7313.9803.9803.699
    AlNb-14.7104.8544.8544.777
    下载: 导出CSV

    表 6  B2-Ti2AlNb置换原子和换位原子形成能(单位: eV)

    Table 6.  Substitutional atom and transposition atom formation energies for B2-Ti2AlNb (in eV).

    DFTThis workThis-lmpEAM-fa
    $ {E}_{\mathrm{o}}^{\mathrm{f}} $$ {\mathrm{T}\mathrm{i}}_{\mathrm{A}\mathrm{l}} $1.0460.9760.976–2.863
    $ {\mathrm{T}\mathrm{i}}_{\mathrm{N}\mathrm{b}} $–0.384–0.418–0.418–2.440
    $ {\mathrm{A}\mathrm{l}}_{\mathrm{T}\mathrm{i}} $0.2680.4330.433–1.164
    $ {\mathrm{A}\mathrm{l}}_{\mathrm{N}\mathrm{b}} $–1.310–1.216–1.216–1.113
    $ {\mathrm{N}\mathrm{b}}_{\mathrm{T}\mathrm{i}} $0.6380.6240.624–7.439
    $ {\mathrm{N}\mathrm{b}}_{\mathrm{A}\mathrm{l}} $1.5221.2891.2890.911
    $ {E}_{\mathrm{e}}^{\mathrm{f}} $TiAl1.0971.1811.181–4.142
    TiNb0.2700.1910.191–9.213
    AlNb0.1230.1720.172–0.571
    Clo1.0781.1321.132–3.169
    Ant0.4530.4130.413–10.752
    下载: 导出CSV

    表 7  B2-Ti2AlNb的表面能(单位: eV)

    Table 7.  Surface energies for B2-Ti2AlNb (in eV).

    DFTThis workThis-lmpEAM-fa
    $ {E}_{\mathrm{s}\mathrm{u}\mathrm{r}}^{\mathrm{f}} $(100)2.0562.2982.2731.705
    (110)1.9372.1942.1701.620
    (100)′1.8441.9230.484
    (110)′1.6611.750–11.000
    下载: 导出CSV

    表 8  Ti2AlNb合金的内聚能(单位: eV)

    Table 8.  Cohesive energies for Ti2AlNb alloys (in eV).

    VB260%67%75%83%91%1110%120%130%142%154%
    E-DFT–3.22–4.13–4.75–5.14–5.35–5.42–5.37–5.22–5.02–4.77–4.48
    $ V_{{\rm D0}_{19}} $57%64%72%81%90%1111%122%134%147%160%
    E-DFT–2.55–3.78–4.60–5.10–5.37–5.44–5.38–5.21–4.96–4.66–4.32
    VO58%65%73%81%90%1110%121%133%145%158%
    E-DFT–2.79–3.92–4.69–5.16–5.41–5.48–5.42–5.26–5.03–4.74–4.42
    下载: 导出CSV
  • [1]

    Deringer V, Csanyi G 2017 Phys. Rev. B 95 094203Google Scholar

    [2]

    Alizadeh Z, Mohammadizadeh M R 2019 Physica C 558 7Google Scholar

    [3]

    Jordan M I, Mitchell T M 2015 Science 349 255Google Scholar

    [4]

    Smith J S, Nebgen B, Mathew N, Chen J, Lubbers N, Burakovsky L, Tretiak S, Nam H A, Germann T, Fensin S, Barros K 2021 Nat. Commun. 12 1257Google Scholar

    [5]

    Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135Google Scholar

    [6]

    Kumpfert J 2001 Adv. Eng. Mater. 3 851Google Scholar

    [7]

    Boehlert C J, Majumdar B S 1999 Metall. Mater. Trans. A 30 2305Google Scholar

    [8]

    冯艾寒, 李渤渤, 沈军 2011 材料与冶金学报 10 30Google Scholar

    Feng A H, Li B B, Shen J 2011 J. Mater. Metall. 10 30Google Scholar

    [9]

    Gogia T K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M 1998 Intermetallics 6 741Google Scholar

    [10]

    Banerjee D, Gogia A K, Nandi T K, Joshi V A 1988 Acta Metall. 36 871Google Scholar

    [11]

    Pathak A, Singh A K 2015 Solid State Commun. 204 9Google Scholar

    [12]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [13]

    Cheng C, Ma Y L, Bao Q L, Wang X, Sun J X, Zhou G, Wang H, Liu Y X, Xu D S 2019 Comput. Mater. Sci. 173 109432Google Scholar

    [14]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [15]

    Voter A F 1994 Intermetallic Compounds (New York: Wiley) pp77—80

    [16]

    Mishin Y, Mehl M J 2002 Phys. Rev. B 65 224114Google Scholar

    [17]

    Ravi C, Vajeeston P, Mathijaya S, Asokamani R 1999 Phys. Rev. B:Condens. Matter. 60 683Google Scholar

    [18]

    Kittel C 1976 Introduction to Solid State Physics (New Jersey: John Wiley & Sons) pp57–58

    [19]

    Weast R C 1984 Handbook of Chemistry and Physics (Boca Raton: Chemical Rubber) p64

    [20]

    Johnson R A 1972 Phys. Rev. B 6 2094Google Scholar

    [21]

    Oh D J, Johnson R A 2011 Mater. Res. 3 471Google Scholar

    [22]

    Bolef D I 1961 Appl. Phys. 32 100Google Scholar

    [23]

    Agrawal A, Mishra R, Ward L, Flores K M, Windl W 2013 Modell. Simul. Mater. Sci. Eng. 21 085001Google Scholar

    [24]

    Farkas D 1999 Modell. Simul Mater. Sci. Eng. 4 23Google Scholar

    [25]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963Google Scholar

    [26]

    Julius C S, Martin P 2006 J. Phase Equilib. Diffus. 27 255Google Scholar

    [27]

    Vasudevan V K, Yang J, Woodfield A P 1996 Scr. Mater. 35 1033Google Scholar

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能. 物理学报, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [4] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [8] 张培健, 孟洋, 刘紫玉, 潘新宇, 梁学锦, 陈东敏, 赵宏武. 缺陷分布对Ag-SiO2薄膜电阻翻转效应的影响. 物理学报, 2012, 61(10): 107703. doi: 10.7498/aps.61.107703
    [9] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [10] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究. 物理学报, 2011, 60(11): 117101. doi: 10.7498/aps.60.117101
    [11] 林民东, 朱娟娟, 王伟, 周邦新, 刘文庆, 徐刚. 核反应堆压力容器模拟钢中富Cu原子团簇的析出与嵌入原子势计算. 物理学报, 2010, 59(2): 1163-1168. doi: 10.7498/aps.59.1163
    [12] 李盛涛, 成鹏飞, 李建英. Al2O3单晶三明治结构的高温热激发电流. 物理学报, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [13] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [14] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [15] 郝小鹏, 王宝义, 于润升, 魏 龙. 锆离子注入锆-4合金缺陷的慢正电子研究. 物理学报, 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [16] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [17] 于 松, 王崇愚, 于 涛. 嵌入原子法研究Ni3Al中点缺陷以及Re择优占位和集团化. 物理学报, 2007, 56(6): 3212-3218. doi: 10.7498/aps.56.3212
    [18] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [19] 潘必才. 包含键环境修正的硅氢紧束缚势模型. 物理学报, 2001, 50(2): 268-272. doi: 10.7498/aps.50.268
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  2681
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-06-19
  • 上网日期:  2022-10-11
  • 刊出日期:  2022-10-20

/

返回文章
返回