搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形子模型中的彩虹伤痕态

谢岩骏 戴汉宁

引用本文:
Citation:

分形子模型中的彩虹伤痕态

谢岩骏, 戴汉宁
cstr: 32037.14.aps.74.20250061

Rainbow scar states in the fracton model

XIE Yanjun, DAI Hanning
cstr: 32037.14.aps.74.20250061
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子多体伤痕态的弱遍历性动力学与本征态热化假说相悖, 在淬火动力学中局域可观测量出现周期振荡. 这种现象通常与伤痕态二分纠缠熵的亚体积定律有关. 纠缠熵呈现出异常值, 与能谱主体相分离. 本文使用精确对角化的方法数值模拟了准一维分形子模型中的彩虹伤痕态, 该态由一系列远距离的四体纠缠组成, 依次分布于中心对称的四个格点, 其二分纠缠熵遵循体积定律. 研究发现该态在未与能谱主体分离的情况下, 表现出了弱热化现象. 当引入横场破坏模型的子系统对称性后, 弱热化特性随即消失. 进一步地, 在分形子模型中提出了彩虹伤痕态的制备方案, 通过调制局域的四体交换相互作用和$ \hat{\sigma}^z$门, 从尼尔态出发, 实现了高保真度的态制备. 分析相互作用的强度噪声影响, 该方案表现出一定的鲁棒性. 本文证明了分形子模型中彩虹伤痕态的存在, 为非平衡量子系统中弱热化的研究提供了新的途径.
    The eigenstate thermalization hypothesis describes the nonequilibrium dynamics of an isolated quantum many-body system, during which a pure state becomes locally indistinguishable from a thermal ensemble. The discovery of quantum many-body scars (QMBS) shows a weak violation of ergodicity, characterized by coherent oscillations of local observables after a quantum quench. These states consist of the tower of regular eigenstates which are equally spaced in the energy spectrum. Although subextensive entanglement scaling is a primary feature widely used to detect QMBS numerically as entropy outliers, rainbow scars exhibit volume-law scaling, which may challenge this property. In this work, we construct the rainbow scar state in the fracton model on a two-leg ladder. The fracton model is composed of four-body ring-exchange interactions, exhibiting global time-reversal symmetry $ \hat{{{\cal{T}}}}={{\cal{K}}} {\mathrm{i}} \hat{\sigma}^y $ and subsystem $ {\hat{U}(1)}=\displaystyle \prod\nolimits_{j \in \{\text {row/col}\}} {\mathrm{exp}}\Big({{\mathrm{i}} \dfrac{\theta}{2} \hat{\sigma}_j^z}\Big)$ symmetry. The subsystem symmetry constrains particle mobility, hindering the establishment of thermal equilibrium and leading to a series of anomalous dynamical processes. We construct the rainbow scar state with distributed four-body GHZ states whose entanglement entropy follows the volume law. By calculating the eigenstates of the fracton model with exact diagonalization, the rainbow scar state consists of a series of degenerate high-energy excited states that are not significant outliers among other eigenstates in the spectrum. By introducing the on-site interaction to break the time-reversal symmetry, the degeneracy of rainbow scar states is lifted into an equally spaced tower of states, ensuring the revival of the initial state. However, when subsystem $\hat U(1) $ symmetry is broken, the scar state is quickly thermalized, indicating that the weak thermalization may be protected by subsystem $\hat U(1) $ symmetry. Additionally, we propose a scheme for preparing the rainbow scar state by modulating the strength of the four-body interaction and $ \hat{\sigma}^z$ operations, analyzing the influence of noise on the strength of the four-body interaction. This work provides new insights into the weak thermalization processes in fracton model and aids in understanding the nature of ETH-violation in various nonequilibrium systems.
      通信作者: 戴汉宁, daihan@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074367)、国家重点研发计划(批准号: 2020YFA0309804, 2023YFC2206200)、上海市市级科技重大专项(批准号: 2019SHZDZX01)和科技创新2030—“量子通信与量子计算机” 重大项目(批准号: 2021ZD0302002)资助的课题.
      Corresponding author: DAI Hanning, daihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), the National Key R&D Program of China (Grant No. 2020YFA0309804, 2023YFC2206200), the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01), and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302002).
    [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dmitriev I A, Mirlin A D, Polyakov D G, Zudov M A 2012 Rev. Mod. Phys. 84 1709Google Scholar

    [3]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001Google Scholar

    [4]

    Deutsch J M 1991 Phys. Rev. A 43 2046Google Scholar

    [5]

    Srednicki M 1994 Phys. Rev. E 50 888Google Scholar

    [6]

    Rigol M, Dunjko V, Yurovsky V, Olshanii M 2007 Phys. Rev. Lett. 98 050405Google Scholar

    [7]

    Calabrese P, Essler F H L, Fagotti M 2011 Phys. Rev. Lett. 106 227203Google Scholar

    [8]

    Nandkishore R, Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15Google Scholar

    [9]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [10]

    Moudgalya S, Rachel S, Bernevig B A, Regnault N 2018 Phys. Rev. B 98 235155Google Scholar

    [11]

    Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papic Z, Serbyn M, Lukin M D, Abanin D A 2019 Phys. Rev. Lett. 122 220603Google Scholar

    [12]

    Schecter M, Iadecola T 2019 Phys. Rev. Lett. 123 147201Google Scholar

    [13]

    Shiraishi N, Mori T 2017 Phys. Rev. Lett. 119 030601Google Scholar

    [14]

    Lin C J, Motrunich O I 2019 Phys. Rev. Lett. 122 173401Google Scholar

    [15]

    Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T 2019 Phys. Rev. Res. 1 033144Google Scholar

    [16]

    Langlett C M, Yang Z C, Wildeboer J, Gorshkov A V, Iadecola T, Xu S 2022 Phys. Rev. B 105 L060301Google Scholar

    [17]

    Wildeboer J, Langlett C M, Yang Z C, Gorshkov A V, Iadecola T, Xu S 2022 Phys.Rev. B 106 205142Google Scholar

    [18]

    Iversen M, Bardarson J H, Nielsen E B 2024 Phys. Rev. A 109 023310Google Scholar

    [19]

    Ramírez G, Rodríguez-Laguna J, Sierra G 2015 J. Stat. Mech.: Theory Exp. 2015 06002Google Scholar

    [20]

    Ramírez G, Rodríguez-Laguna J, Sierra G 2014 J. Stat. Mech. : Theory Exp. 2014 10004Google Scholar

    [21]

    Dutta S, Kuhr S, Cooper N R 2024 Phys. Rev. Res. 6 L012039Google Scholar

    [22]

    Byles L, Sierra G, Pachos J K 2024 New J. Phys. 26 013055Google Scholar

    [23]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [24]

    Moudgalya S, Bernevig B A, Regnault N 2022 Rep. Prog. Phys. 85 086501Google Scholar

    [25]

    Srivatsa N S, Yarloo H, Moessner R, Nielsen E B 2023 Phys.Rev. B 108 L100202Google Scholar

    [26]

    Haah J 2011 Phys. Rev. A 83 042330Google Scholar

    [27]

    Vijay S, Haah J, Fu L 2016 Phys. Rev. B 94 235157Google Scholar

    [28]

    Pretko M, Radzihovsky L 2018 Phys. Rev. Lett. 120 195301Google Scholar

    [29]

    Gromov A, Radzihovsky L 2024 Rev. Mod. Phys. 96 011001Google Scholar

    [30]

    Du Y H, Mehta U, Nguyen D, Son D T 2022 SciPost. Phys. 12 050Google Scholar

    [31]

    Prem A, Huang S J, Song H, Hermele H 2019 Phys. Rev. X 9 021010Google Scholar

    [32]

    Benedetti V, Bueno P, Magan J M 2023 Phys. Rev. Lett. 131 111603Google Scholar

    [33]

    Prem A, Haah J, Nandkishore R 2017 Phys. Rev. B 95 155133Google Scholar

    [34]

    Pretko M 2017 Phys. Rev. B 96 115102Google Scholar

    [35]

    Pai S, Pretko M 2019 Phys. Rev. Lett. 123 136401Google Scholar

    [36]

    Pretko M, Chen X, You Y 2020 Int. J. Mod. Phys. A 35 2030003Google Scholar

    [37]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F 2020 Phys. Rev. X 10 011047Google Scholar

    [38]

    Scherg S, Kohlert T, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2021 Nat. Commun. 12 4490Google Scholar

    [39]

    Kohlert T, Scherg S, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2023 Phys. Rev. Lett. 130 010201Google Scholar

    [40]

    Adler D, Wei D, Will M, Srakaew K, Agrawal S, Weckesser P, Moessner R, Pollmann F, Bloch I, Aidelsburger M 2024 Nature 636 80Google Scholar

    [41]

    Imai S, Tsuji N 2025 Phys. Rev. Res. 7 013064Google Scholar

    [42]

    Weinberg P, Bukov M 2019 SciPost Phys. 7 020Google Scholar

    [43]

    Aasen D, Bulmash D, Prem A, Slagle K, Williamson D J 2020 Phys. Rev. Res. 2 043165Google Scholar

    [44]

    You Y Z, Burnell F J, Hughes T L 2021 Phys. Rev. B 103 245128Google Scholar

    [45]

    Paredes B, Bloch I 2008 Phys. Rev. A 77 023603Google Scholar

    [46]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W 2017 Nat. Phys 13 1195Google Scholar

    [47]

    Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J, Zoller P 2014 Ann. Phys. 351 634Google Scholar

    [48]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F 2020 Phys. Rev. B 101 125126Google Scholar

    [49]

    Khudorozhkov A, Tiwari A, Chamon C, Neupert T 2022 SciPost Phys. 13 098Google Scholar

    [50]

    O'Dea N, Burnell F, Chandran A, Khemani V 2020 Phys. Rev. Res. 2 043305Google Scholar

    [51]

    Ren J, Liang C, Fang C 2021 Phys. Rev. Lett. 126 120604Google Scholar

    [52]

    Zhao H Z, Smith A, Mintert F, Knolle J 2021 Phys. Rev. Lett. 127 150601Google Scholar

    [53]

    Ho W W, Choi S Pichler H, Lukin M D 2019 Phys. Rev. Lett. 122 040603Google Scholar

    [54]

    Mondragon-Shem I, Vavilov M G, Martin I 2021 PRX Quantum 2 030349Google Scholar

    [55]

    Barmettler P, Rey A M, Demler E, Lukin M D, Bloch I, Gritsev V 2008 Phys. Rev. A 78 012330Google Scholar

    [56]

    Alkurtass B, Banchi L, Bose S 2014 Phys. Rev. A 90 042304Google Scholar

    [57]

    Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm F K 2015 Eur. Phys. J. D 69 279Google Scholar

    [58]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar

    [59]

    Buijsman W 2022 Phys. Rev. B 106 045104Google Scholar

    [60]

    Dong Y, Zhang S Y, Deng D L 2023 Phys. Rev. B 108 195133Google Scholar

    [61]

    Schuster T, Kobrin B, Gao P, Cong I, Khabiboulline E T, Linke N M, Lukin M D, Monroe C, Yoshida B, Yao N Y 2022 Phys. Rev. X 12 031013Google Scholar

    [62]

    Agarwal L, Langlett C M, Xu S 2023 Phys. Rev. Lett. 130 020801Google Scholar

  • 图 1  (a)分形子模型中彩虹伤痕态的示意图, 中心对称的四个格点间形成交错的四体GHZ态$ (|I\rangle $和$ |Z\rangle) $; (b)调制四体相互作用$ \hat{{\cal{R}}} $, 在晶格的两端形成四体纠缠态. 通过多周期调制和交错的$ \hat{\sigma}^z $门操作实现态制备

    Fig. 1.  (a) Rainbow scar state with each bond a distributed four-qubit GHZ state $|I\rangle$ and $|Z\rangle$; (b) illustration for the preparation of rainbow scar states by modulating four-body ring-exchange interactions $ \hat{{\cal{R}}} $ and gate operations $ \hat{\sigma}^z $.

    图 2  (a)分形子模型中彩虹伤痕态(红色圆形)和基态(蓝色菱形)的二分冯·诺依曼纠缠熵, 子空间a的长度为$ L_a\in [0, L]$; (b)均匀分割子空间$ L_a = L/2 $, 周期性边界条件下分形子模型的不同本征态的二分纠缠熵$ S_A $, 红色的星形代表彩虹伤痕态; (c)引入外场后, 破坏彩虹伤痕态内部对称性, 不同能量的本征态占比呈现等间隔分布; (d)外场作用下的淬火动力学$ (h_z = 2, J_i = J_{AB} = 1) $, 蓝色实线为彩虹态, 红色实线为彩虹伤痕态, 绿色实线为破坏子系统$\hat U(1) $对称性后的彩虹伤痕态; (e)外场作用下的彩虹伤痕态在大时间尺度下的周期性振荡行为. 上述结果通过精确对角化$ 2\times 8 $的梯子晶格计算得到

    Fig. 2.  (a) The bipartite von Neumann entanglement entropy of the rainbow scar state (red circle) and the ground state (blue diamond), with the length of subspace a being $ L_a \in [0, L] $; (b) the bipartite entanglement entropy of the eigenstates of the fracton model under periodic boundary conditions with $ L_a = L/2 $, where the red star represents the result of the rainbow scar state; (c) the overlap between the rainbow scar state and each energy eigenstate after breaking the internal symmetry of the rainbow scar state with $ h_z = 2, J_i = J_{AB} = 1 $; (d) the quench dynamics of fidelity with rainbow state (blue), rainbow scar states (red) and rainbow scar states without subsystem $\hat U(1) $ symmetry (green); (e) periodic oscillation behavior of rainbow scar states under external fields at long-time scales. The above results were obtained through exact diagonalization calculations on a $ 2\times 8 $ ladder lattice

    图 3  (a)通过线性调制四体相互作用的强度$ J_{{\mathrm{o(e)}}} $, 各个演化周期下, 中心对称的四个格子形成GHZ态的保真度随时间的演化. (b)均匀分割的二分纠缠熵随时间逐渐增长为$ L/2\log2 $, 红色曲线代表无噪声情况, 蓝色曲线为相互作用强度噪声$ J\sim {\cal{N}}(1, 0.2^2) $影响下三次模拟的平均, 阴影为相应的标准差. (c)中心对称格点间的自旋关联的建立过程. 系统尺寸为$ 2\times 12 $的梯子晶格

    Fig. 3.  (a) Time evolution of the fidelity with the distributed GHZ state through modulating the ring-exchange interaction linearly between each plaquette. (b) The von Neumann entropy $ S_A $ between two sides increases until $ L/2\log2 $. The red curve represents the noise-free case, while the blue curve represents the average of three simulations affected by Gaussian noise $ {\cal{N}}(1, 0.2^2) $, with the blue shadow indicating the corresponding standard deviation. (c) Two-site and four-site spin-spin correlations between centrosymmetric sites develop during the evolution. The geometry of the ladder is $ 2\times 12 $.

  • [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dmitriev I A, Mirlin A D, Polyakov D G, Zudov M A 2012 Rev. Mod. Phys. 84 1709Google Scholar

    [3]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001Google Scholar

    [4]

    Deutsch J M 1991 Phys. Rev. A 43 2046Google Scholar

    [5]

    Srednicki M 1994 Phys. Rev. E 50 888Google Scholar

    [6]

    Rigol M, Dunjko V, Yurovsky V, Olshanii M 2007 Phys. Rev. Lett. 98 050405Google Scholar

    [7]

    Calabrese P, Essler F H L, Fagotti M 2011 Phys. Rev. Lett. 106 227203Google Scholar

    [8]

    Nandkishore R, Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15Google Scholar

    [9]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [10]

    Moudgalya S, Rachel S, Bernevig B A, Regnault N 2018 Phys. Rev. B 98 235155Google Scholar

    [11]

    Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papic Z, Serbyn M, Lukin M D, Abanin D A 2019 Phys. Rev. Lett. 122 220603Google Scholar

    [12]

    Schecter M, Iadecola T 2019 Phys. Rev. Lett. 123 147201Google Scholar

    [13]

    Shiraishi N, Mori T 2017 Phys. Rev. Lett. 119 030601Google Scholar

    [14]

    Lin C J, Motrunich O I 2019 Phys. Rev. Lett. 122 173401Google Scholar

    [15]

    Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T 2019 Phys. Rev. Res. 1 033144Google Scholar

    [16]

    Langlett C M, Yang Z C, Wildeboer J, Gorshkov A V, Iadecola T, Xu S 2022 Phys. Rev. B 105 L060301Google Scholar

    [17]

    Wildeboer J, Langlett C M, Yang Z C, Gorshkov A V, Iadecola T, Xu S 2022 Phys.Rev. B 106 205142Google Scholar

    [18]

    Iversen M, Bardarson J H, Nielsen E B 2024 Phys. Rev. A 109 023310Google Scholar

    [19]

    Ramírez G, Rodríguez-Laguna J, Sierra G 2015 J. Stat. Mech.: Theory Exp. 2015 06002Google Scholar

    [20]

    Ramírez G, Rodríguez-Laguna J, Sierra G 2014 J. Stat. Mech. : Theory Exp. 2014 10004Google Scholar

    [21]

    Dutta S, Kuhr S, Cooper N R 2024 Phys. Rev. Res. 6 L012039Google Scholar

    [22]

    Byles L, Sierra G, Pachos J K 2024 New J. Phys. 26 013055Google Scholar

    [23]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [24]

    Moudgalya S, Bernevig B A, Regnault N 2022 Rep. Prog. Phys. 85 086501Google Scholar

    [25]

    Srivatsa N S, Yarloo H, Moessner R, Nielsen E B 2023 Phys.Rev. B 108 L100202Google Scholar

    [26]

    Haah J 2011 Phys. Rev. A 83 042330Google Scholar

    [27]

    Vijay S, Haah J, Fu L 2016 Phys. Rev. B 94 235157Google Scholar

    [28]

    Pretko M, Radzihovsky L 2018 Phys. Rev. Lett. 120 195301Google Scholar

    [29]

    Gromov A, Radzihovsky L 2024 Rev. Mod. Phys. 96 011001Google Scholar

    [30]

    Du Y H, Mehta U, Nguyen D, Son D T 2022 SciPost. Phys. 12 050Google Scholar

    [31]

    Prem A, Huang S J, Song H, Hermele H 2019 Phys. Rev. X 9 021010Google Scholar

    [32]

    Benedetti V, Bueno P, Magan J M 2023 Phys. Rev. Lett. 131 111603Google Scholar

    [33]

    Prem A, Haah J, Nandkishore R 2017 Phys. Rev. B 95 155133Google Scholar

    [34]

    Pretko M 2017 Phys. Rev. B 96 115102Google Scholar

    [35]

    Pai S, Pretko M 2019 Phys. Rev. Lett. 123 136401Google Scholar

    [36]

    Pretko M, Chen X, You Y 2020 Int. J. Mod. Phys. A 35 2030003Google Scholar

    [37]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F 2020 Phys. Rev. X 10 011047Google Scholar

    [38]

    Scherg S, Kohlert T, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2021 Nat. Commun. 12 4490Google Scholar

    [39]

    Kohlert T, Scherg S, Sala P, Pollmann F, Madhusudhana H B, Bloch I, Aidelsburger M 2023 Phys. Rev. Lett. 130 010201Google Scholar

    [40]

    Adler D, Wei D, Will M, Srakaew K, Agrawal S, Weckesser P, Moessner R, Pollmann F, Bloch I, Aidelsburger M 2024 Nature 636 80Google Scholar

    [41]

    Imai S, Tsuji N 2025 Phys. Rev. Res. 7 013064Google Scholar

    [42]

    Weinberg P, Bukov M 2019 SciPost Phys. 7 020Google Scholar

    [43]

    Aasen D, Bulmash D, Prem A, Slagle K, Williamson D J 2020 Phys. Rev. Res. 2 043165Google Scholar

    [44]

    You Y Z, Burnell F J, Hughes T L 2021 Phys. Rev. B 103 245128Google Scholar

    [45]

    Paredes B, Bloch I 2008 Phys. Rev. A 77 023603Google Scholar

    [46]

    Dai H N, Yang B, Reingruber A, Sun H, Xu X F, Chen Y A, Yuan Z S, Pan J W 2017 Nat. Phys 13 1195Google Scholar

    [47]

    Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J, Zoller P 2014 Ann. Phys. 351 634Google Scholar

    [48]

    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F 2020 Phys. Rev. B 101 125126Google Scholar

    [49]

    Khudorozhkov A, Tiwari A, Chamon C, Neupert T 2022 SciPost Phys. 13 098Google Scholar

    [50]

    O'Dea N, Burnell F, Chandran A, Khemani V 2020 Phys. Rev. Res. 2 043305Google Scholar

    [51]

    Ren J, Liang C, Fang C 2021 Phys. Rev. Lett. 126 120604Google Scholar

    [52]

    Zhao H Z, Smith A, Mintert F, Knolle J 2021 Phys. Rev. Lett. 127 150601Google Scholar

    [53]

    Ho W W, Choi S Pichler H, Lukin M D 2019 Phys. Rev. Lett. 122 040603Google Scholar

    [54]

    Mondragon-Shem I, Vavilov M G, Martin I 2021 PRX Quantum 2 030349Google Scholar

    [55]

    Barmettler P, Rey A M, Demler E, Lukin M D, Bloch I, Gritsev V 2008 Phys. Rev. A 78 012330Google Scholar

    [56]

    Alkurtass B, Banchi L, Bose S 2014 Phys. Rev. A 90 042304Google Scholar

    [57]

    Glaser S J, Boscain U, Calarco T, Koch C P, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm F K 2015 Eur. Phys. J. D 69 279Google Scholar

    [58]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar

    [59]

    Buijsman W 2022 Phys. Rev. B 106 045104Google Scholar

    [60]

    Dong Y, Zhang S Y, Deng D L 2023 Phys. Rev. B 108 195133Google Scholar

    [61]

    Schuster T, Kobrin B, Gao P, Cong I, Khabiboulline E T, Linke N M, Lukin M D, Monroe C, Yoshida B, Yao N Y 2022 Phys. Rev. X 12 031013Google Scholar

    [62]

    Agarwal L, Langlett C M, Xu S 2023 Phys. Rev. Lett. 130 020801Google Scholar

  • [1] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, 2020, 69(18): 180301. doi: 10.7498/aps.69.20200649
    [2] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建. 物理学报, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [3] 郗玉兴, 单传家, 黄燕霞. 带有三体相互作用的XXZ自旋链模型的隐形传态. 物理学报, 2014, 63(11): 110305. doi: 10.7498/aps.63.110305
    [4] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [5] 姜礼华, 刘福生, 田春玲. LiH晶体中离子间多体相互作用与高压下状态方程研究. 物理学报, 2008, 57(7): 4412-4416. doi: 10.7498/aps.57.4412
    [6] 刘占军, 朱少平, 曹莉华, 郑春阳. 利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用. 物理学报, 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [7] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [8] 刘海莲, 王治国, 杨成全, 石云龙. 链间超交换相互作用下spin-Peierls梯子模型的基态行为. 物理学报, 2006, 55(7): 3688-3691. doi: 10.7498/aps.55.3688
    [9] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响. 物理学报, 2006, 55(2): 764-769. doi: 10.7498/aps.55.764
    [10] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算. 物理学报, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [11] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [12] 田春玲, 刘福生, 蔡灵仓, 经福谦. 四体相互作用对固氦压缩特性的贡献. 物理学报, 2003, 52(5): 1218-1221. doi: 10.7498/aps.52.1218
    [13] 林秀, 李洪才. 利用V形三能级原子与光场Raman相互作用制备多原子GHZ态. 物理学报, 2001, 50(9): 1689-1692. doi: 10.7498/aps.50.1689
    [14] 张国民, 杨传章. 多自旋相互作用Ising模型相变类型的Monte Carlo研究. 物理学报, 1993, 42(10): 1680-1683. doi: 10.7498/aps.42.1680
    [15] 马锦秀, 徐至展. 双频强激光与等离子体相互作用中的双稳态效应. 物理学报, 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [16] 王福高, 唐坤发, 胡嘉桢. 三结点hierarchical晶格上具有三体相互作用伊辛模型的临界行为. 物理学报, 1989, 38(7): 1196-1198. doi: 10.7498/aps.38.1196
    [17] 熊小明, 周世勋. 强磁场中库仑相互作用的少体二维电子气的能量. 物理学报, 1987, 36(9): 1235-1240. doi: 10.7498/aps.36.1235
    [18] 贺贤土. 等离子体中粒子与cavitons相互作用. 物理学报, 1987, 36(2): 199-207. doi: 10.7498/aps.36.199
    [19] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射. 物理学报, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
    [20] 张历宁, 安瑛, 陈庭金, 戴元本. 复合模型和∑的四体衰变. 物理学报, 1962, 18(5): 264-271. doi: 10.7498/aps.18.264
计量
  • 文章访问数:  298
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2023-03-11
  • 上网日期:  2025-03-17

/

返回文章
返回