搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层镍酸盐La3Ni2O7超导转变温度的压力依赖: 巡游电子与局域自旋图像

路洪艳 王强华

引用本文:
Citation:

双层镍酸盐La3Ni2O7超导转变温度的压力依赖: 巡游电子与局域自旋图像

路洪艳, 王强华
cstr: 32037.14.aps.74.20250696

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan, WANG Qianghua
cstr: 32037.14.aps.74.20250696
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 对于双层Ruddlesden-Popper相镍酸盐La3Ni2O7, 近期的实验研究表明, 在超导区, 随着压力增大, 其超导转变温度从18 GPa压力下的83 K单调下降, 表现出近直角三角形的超导转变温度-压力相图, 与铜氧化物超导体和铁基超导体中掺杂或压力下的穹顶形超导相图不同. 解释该反常相图对揭示La3Ni2O7的超导机制至关重要. 由于电声耦合机制无法解释镍基超导体的高超导转变温度, 因此, 本文从巡游电子和局域自旋图像出发, 探讨超导转变温度的压力依赖性. 通过将理论结果与实验结果进行对比, 为揭示其超导机制提供线索.
    Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have shown that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa as pressure further increases, exhibiting a nearly right-triangular temperature-pressure phase diagram that is different from the dome-shaped diagrams observed in cuprates and iron-based superconductors under either doping or pressure. It is important to understand this anomalous phase diagram in elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, in this work, the pressure dependence of the transition temperature is investigated from the perspective of the itinerant electrons picture and the local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, it is found that the pairing symmetry is consistently an $s_\pm$-wave, driven by spin fluctuations that become progressively weakened under pressure, thereby decreasing in the superconducting transition temperature, which is in qualitative agreement with the experimental observation. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with the experimental result. Therefore, the pressure dependence of superconducting transition temperature is more consistent with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected that further and more detailed research will be conducted on the pressure dependence of superconducting transition temperature from the local spin picture, providing deeper insights into the underlying superconducting mechanism of La3Ni2O7.
      通信作者: 路洪艳, hylu@qfnu.edu.cn ; 王强华, qhwang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074213, 12374147, 12274205, 92365203, 11874205, 11574108)、国家重点研发计划(批准号: 2022YFA1403201)和山东省自然科学基金重大基础研究项目(批准号: ZR2021ZD01)资助的课题.
      Corresponding author: LU Hongyan, hylu@qfnu.edu.cn ; WANG Qianghua, qhwang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074213, 12374147, 12274205, 92365203, 11874205, 11574108), the National Key Resaerch and Development Program of China (Grant No. 2022YFA1403201), and the National Natural Science Foundation of Shandong Province, China (Grant No. ZR2021ZD01).
    [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [9]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801Google Scholar

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [12]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [13]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [14]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [17]

    Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801Google Scholar

    [18]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys. Sin. 73 197104Google Scholar

    [19]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [20]

    Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [23]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [25]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [26]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [27]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [29]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [32]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [34]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [39]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122Google Scholar

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [45]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [46]

    Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [48]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [49]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759Google Scholar

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [53]

    McMillan W L 1968 Phys. Rev. 167 331Google Scholar

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]

    [56]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [60]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [61]

    陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401Google Scholar

    Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401Google Scholar

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902Google Scholar

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945Google Scholar

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105Google Scholar

  • 图 1  La3Ni2O7从常压到104 GPa压力的超导相图[63]

    Fig. 1.  The superconducting phase diagram of La3Ni2O7 single crystals under ambient pressure to 104 GPa[63].

    图 2  (a) 高压下La3Ni2O7的晶胞与原胞结构示意图; (b) 不同压力下原胞的能带结构及(c) 态密度(DOS)分布, 其中插图展示了费米能级$ E_\mathrm{F} $附近的DOS特征[57]

    Fig. 2.  (a) Conventional cell and primitive cell for La3Ni2O7 under high pressure; (b) band structure and (c) DOS under different pressures for primitive cell, the insert shows the DOS near the $ E_\mathrm{F} $[57].

    图 3  (a) La3Ni2O7在14.1, 50和90 GPa压力下, U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV时, 超导(SC)、自旋密度波(SDW)和电荷密度波(CDW)通道中$ S^{-1} $随Λ变化的FRG流方程计算结果, 左插图展示50 GPa压力下费米面上的能隙函数分布, 右插图显示同压力下SDW通道最负奇异值$ S({\boldsymbol{q}}) $的空间分布特征[57]; (b) La3Ni2O7超导转变温度$ T_{\mathrm{c}} $随压力的相图[57], $ T^{{\mathrm{onset}}}_{\mathrm{c}} $和$ {\mathrm{T}}^{{\mathrm{mid}}}_{\mathrm{c}} $引自实验数据[63]用于对比, 费米能处态密度也展示出来用于对比

    Fig. 3.  (a) FRG flows of $ S^{-1} $ versus Λ in the SC, SDW, and CDW channels of La3Ni2O7, respectively, at pressures 14.1, 50, and 90 GPa with U = 3 eV, $ J_{\mathrm{H}} $ = 0.4 eV; the left subfigure present the gap function on the Fermi surfaces, the right subfigure presents the leading negative $ S({\boldsymbol{q}}) $ in the SDW channel, both subfigures are the results at pressure 50 GPa[57]; (b) phase diagram of superconducting $ T_{\mathrm{c}} $ versus pressure of La3Ni2O7[57], the $ T^{{\mathrm{onset}}}_{\mathrm{c}} $ and $ T^{{\mathrm{mid}}}_{\mathrm{c}} $ are extracted from the experimental work[63] for comparison, the DOS at the $ {E}_{\mathrm{F}}$ ($ {N}_{\mathrm{F}} $) versus pressure is also shown for comparison.

    表 1  不同压力下La3Ni2O7双层双轨道紧束缚模型的在位能$ \varepsilon_a $与跃迁积分$ t_\delta^{ab} $参数表(其中xz分别表示$ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $轨道, 垂直层间距设定为1/2). 压力单位为GPa, $ \varepsilon_a $与$ t_\delta^{ab} $单位均为eV[57]

    Table 1.  On-site energies $ \varepsilon_a $ and hopping integrals $ t_\delta^{ab} $ of the bilayer two-orbital tight-binding model for La3Ni2O7 under different pressures. Here, x and z denote the $ 3 {\mathrm{d}}_{x^2-y^2} $/$ 3 {\mathrm{d}}_{3 z^2-r^2} $ orbitals, respectively. Note that the vertical interlayer distance is assigned as 1/2. The unit of pressure is GPa, and the unit of $ \varepsilon_a $ and $ t_\delta^{ab} $ are eV[57].

    Pressure $ \varepsilon_x $ $ \varepsilon_z $ $ t_{(100)}^{x x} $ $ t_{(100)}^{z z} $ $ t_{(100)}^{x z} $ $ t_{\left(00\frac{1}{2}\right)}^{x x} $ $ t_{\left(00\frac{1}{2}\right)}^{z z} $ $ t_{(110)}^{x x} $ $ t_{(110)}^{z z} $ $ t_{\left(10\frac{1}{2}\right)}^{x z} $
    14.1 0.728 0.402 –0.470 –0.118 0.235 0.008 –0.623 0.071 –0.018 –0.036
    16.1 0.737 0.407 –0.476 –0.119 0.238 0.009 –0.629 0.071 –0.018 –0.037
    19.7 0.747 0.411 –0.483 –0.121 0.242 0.009 –0.637 0.071 –0.018 –0.037
    21.3 0.749 0.412 –0.486 –0.123 0.243 0.008 –0.640 0.071 –0.018 –0.037
    25.7 0.761 0.416 –0.495 –0.125 0.247 0.009 –0.647 0.072 –0.018 –0.037
    29.8 0.769 0.417 –0.501 –0.126 0.249 0.010 –0.651 0.072 –0.018 –0.036
    40.0 0.803 0.426 –0.521 –0.134 0.259 0.009 –0.674 0.071 –0.015 –0.040
    50.0 0.833 0.437 –0.535 –0.139 0.269 0.010 –0.698 0.073 –0.016 –0.042
    60.0 0.847 0.435 –0.552 –0.145 0.273 0.011 –0.703 0.075 –0.016 –0.040
    70.0 0.871 0.447 –0.566 –0.149 0.283 0.010 –0.723 0.073 –0.017 –0.041
    80.0 0.896 0.453 –0.580 –0.153 0.287 0.009 –0.738 0.072 –0.015 –0.045
    90.0 0.918 0.461 –0.593 –0.155 0.293 0.008 –0.753 0.071 –0.016 –0.046
    下载: 导出CSV
  • [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [9]

    Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K, Sun L L 2025 Matter Radiat. Extremes 10 027801Google Scholar

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [12]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [13]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [14]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [17]

    Lei Y H, Wang Y H, Song J H, Ge J X, Wu D R, Zhang Y L, Li C J 2024 Chin. Phys. B 33 096801Google Scholar

    [18]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys. Sin. 73 197104Google Scholar

    [19]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [20]

    Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [23]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [25]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [26]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [27]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [29]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [32]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [34]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [39]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122Google Scholar

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [45]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [46]

    Shen Y, Qin M L, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [48]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [49]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759Google Scholar

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [53]

    McMillan W L 1968 Phys. Rev. 167 331Google Scholar

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877 [cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536 [cond-mat.str-el]

    [56]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341 [cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [60]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [61]

    陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401Google Scholar

    Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401Google Scholar

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev. nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146Google Scholar

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902Google Scholar

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945Google Scholar

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105Google Scholar

  • [1] 肖志峰, 王守宇, 戴雅婷, 康新淼, 张振华, 刘卫芳. Ge掺杂增强Ruddlesden-Popper结构准二维Sr3Sn2O7陶瓷杂化非本征铁电性的物理机制. 物理学报, 2024, 73(14): 147702. doi: 10.7498/aps.73.20240583
    [2] 王朝, 张铭, 张持, 王如志, 严辉. n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf) 非常规铁电性的第一性原理研究. 物理学报, 2021, 70(11): 116302. doi: 10.7498/aps.70.20202142
    [3] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [5] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [6] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图. 物理学报, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [7] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [8] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建. 物理学报, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [9] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究. 物理学报, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [11] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [12] 陈文斌, 陶向明, 陈 鑫, 谭明秋. Ag(100)表面氧吸附的密度泛函理论和STM图像研究. 物理学报, 2008, 57(1): 488-495. doi: 10.7498/aps.57.488
    [13] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [14] 贾金锋, 董国材, 王立莉, 马旭村, 薛其坤, Y. Hasegawa T. Sakurai. 局域功函数图像及其在Cu(111)-Au/Pd表面的应用. 物理学报, 2005, 54(4): 1513-1527. doi: 10.7498/aps.54.1513
    [15] 陶向明, 谭明秋, 徐小军, 蔡建秋, 陈文斌, 赵新新. c(2×2)O吸附Cu(001)表面结构、电子态与STM图像的研究. 物理学报, 2004, 53(11): 3858-3862. doi: 10.7498/aps.53.3858
    [16] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
    [17] 周旭冰, 季航, 李晓卫, 赵汝光, 杨威生. 用中能电子向前散射图像研究表面原子结构. 物理学报, 1997, 46(8): 1535-1542. doi: 10.7498/aps.46.1535
    [18] 蒋开明, 施发健, 林宗涵. 巡游电子反铁磁性的变分泛函积分方法. 物理学报, 1995, 44(10): 1595-1606. doi: 10.7498/aps.44.1595
    [19] 韩飞, 马本堃. 外场存在时界面生长的重整化群研究. 物理学报, 1993, 42(11): 1812-1816. doi: 10.7498/aps.42.1812
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  372
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-30
  • 修回日期:  2025-07-23
  • 上网日期:  2025-07-14
  • 刊出日期:  2025-09-05

/

返回文章
返回