搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层镍酸盐La3Ni2O7超导转变温度的压力依赖: 巡游电子与局域自旋图像

路洪艳 王强华

引用本文:
Citation:

双层镍酸盐La3Ni2O7超导转变温度的压力依赖: 巡游电子与局域自旋图像

路洪艳, 王强华

Pressure dependence of superconducting transition temperature in bilayer nickelate La3Ni2O7: Itinerant electrons and local spin picture

LU Hongyan, WANG Qianghua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 对于双层Ruddlesden-Popper相镍酸盐La3Ni2O7,近期的实验研究表明,在超导区,随着压力增大,其超导转变温度从18 GPa压力下的83 K单调下降,表现出近直角三角形的超导转变温度-压力相图,与铜氧化物超导体和铁基超导体中掺杂或压力下的穹顶形超导相图不同.解释该反常相图对揭示La3Ni2O7的超导机制至关重要.由于电声耦合机制无法解释镍基超导体的高超导转变温度,因此,本文从巡游电子和局域自旋图像出发,探讨超导转变温度的压力依赖性.通过将理论结果与实验结果进行对比,为揭示其超导机制提供线索.
    Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have revealed that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa with increasing pressure, exhibiting a nearly right-triangular superconducting transition temperature-pressure phase diagram distinct from the dome-shaped diagrams observed in cuprates and iron-based superconductors under doping or pressure. Understanding this anomalous phase diagram is crucial for elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, this study investigates the pressure dependence of the transition temperature from the perspective of itinerant electrons picture and local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, we find the pairing symmetry is consistently an s±-wave triggered by spin fluctuations which become increasingly weakened by pressure and consequently lead to decreasing superconducting transition temperature, in qualitative agreement with the experiment. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with experimental result. Thus, the pressure dependence of superconducting transition temperature is more in line with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected to conduct further and more detailed research on the pressure dependence of superconducting transition temperature starting from the local spin picture, providing more insights into the underlying superconducting mechanism of La3Ni2O7.
  • [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature(London) 572 624

    [2]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature(London) 621 493

    [3]

    Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302

    [5]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269

    [6]

    Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y 2024 J. Mater. Sci. Technol. 185 147

    [7]

    Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]

    [8]

    Wang L, Li Y, Xie S Y, Liu F, Sun H, Huang C, Gao Y, Nakagawa T, Fu B, Dong B, Cao Z, Yu R, Kawaguchi S I, Kadobayashi H, Wang M, Jin C, Mao H k, Liu H 2024 J. Am. Chem. Soc. 146 7506

    [9]

    Zhou Y, Guo J, Cai S, Sun H, Wang P, Zhao J, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H, Sun L 2025 Matter Radiat. Extremes 10 027801

    [10]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32

    [11]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503

    [12]

    Wang H, Chen L, Rutherford A, Zhou H, Xie W 2024 Inorg. Chem. 63 5020

    [13]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature(London) 630 847

    [14]

    Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373

    [15]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [16]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [17]

    Lei Y, Wang Y, Song J, Ge J, Wu D, Zhang Y, Li C 2024 Chin. Phys. B 33 096801

    [18]

    Shen Y 2024 Acta Phys. Sin. 73 197104

    [19]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403

    [20]

    Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001

    [21]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505

    [22]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002

    [23]

    Gu Y, Le C, Yang Z, Wu X, Hu J 2025 Phys. Rev. B 111 174506

    [24]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501

    [25]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402

    [26]

    Cao Y, Yang Y f 2024 Phys. Rev. B 109 L081105

    [27]

    Chen X, Jiang P, Li J, Zhong Z, Lu Y 2025 Phys. Rev. B 111 014515

    [28]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [29]

    Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002

    [30]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [31]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511

    [32]

    Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, Si Q 2023 Phys. Rev. B 108 214522

    [33]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502

    [34]

    Yang Y f, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108

    [35]

    Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402

    [36]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501

    [37]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154

    [38]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504

    [39]

    Xia C, Liu H, Zhou S, Chen H 2025 Nat. Commun. 16 1054

    [40]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114

    [41]

    Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]

    [42]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108

    [43]

    Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122

    [44]

    Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514

    [45]

    Luo Z, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61

    [46]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401

    [47]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403

    [48]

    Jiang R, Hou J, Fan Z, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503

    [49]

    Huo Z, Luo Z, Zhang P, Yang A, Liu Z, Tao X, Zhang Z, Guo S, Jiang Q, Chen W, Yao D X, Duan D, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411

    [50]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301

    [51]

    Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759

    [52]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80

    [53]

    McMillan W L 1968 Phys. Rev. 167 331

    [54]

    Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877[cond-mat.supr-con]

    [55]

    Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536[cond-mat.str-el]

    [56]

    Zhan J, Gu Y, Wu X, Hu J 2025 Phys. Rev. Lett. 134 136002

    [57]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001

    [58]

    Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341[cond-mat.supr-con]

    [59]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501

    [60]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, Chen Z 2025 Nature (London) 640 641

    [61]

    Chen Z, Huang H, Xue Q 2025 Acta Phys. Sin. 74 097401

    [62]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature (London) 638 935

    [63]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev nwaf220

    [64]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [65]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [66]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [67]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]

    [68]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205

    [69]

    Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902

    [70]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945

    [71]

    Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105

  • [1] 刘懿, 郝思忠, 田玉琳, 刘国忠. 二维相敏检波器及其在调幅图像解调中应用. 物理学报, doi: 10.7498/aps.68.20190803
    [2] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, doi: 10.7498/aps.67.20181520
    [3] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, doi: 10.7498/aps.67.20181701
    [4] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图. 物理学报, doi: 10.7498/aps.67.20181541
    [5] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, doi: 10.7498/aps.66.088102
    [6] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建. 物理学报, doi: 10.7498/aps.63.044202
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, doi: 10.7498/aps.63.047101
    [8] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究. 物理学报, doi: 10.7498/aps.62.147802
    [9] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, doi: 10.7498/aps.61.220501
    [10] 杨晓苹, 翟宏琛, 王明伟. 一种应用相息图对灰度图像信息进行隐藏的方法. 物理学报, doi: 10.7498/aps.57.847
    [11] 陈文斌, 陶向明, 陈 鑫, 谭明秋. Ag(100)表面氧吸附的密度泛函理论和STM图像研究. 物理学报, doi: 10.7498/aps.57.488
    [12] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, doi: 10.7498/aps.54.5382
    [13] 贾金锋, 董国材, 王立莉, 马旭村, 薛其坤, Y. Hasegawa T. Sakurai. 局域功函数图像及其在Cu(111)-Au/Pd表面的应用. 物理学报, doi: 10.7498/aps.54.1513
    [14] 陶向明, 谭明秋, 徐小军, 蔡建秋, 陈文斌, 赵新新. c(2×2)O吸附Cu(001)表面结构、电子态与STM图像的研究. 物理学报, doi: 10.7498/aps.53.3858
    [15] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, doi: 10.7498/aps.49.1545
    [16] 石云龙, 章豫梅, 陈 鸿, 吴 翔. 一维点阵局域势中玻色系统的相图. 物理学报, doi: 10.7498/aps.47.1870
    [17] 周旭冰, 季航, 李晓卫, 赵汝光, 杨威生. 用中能电子向前散射图像研究表面原子结构. 物理学报, doi: 10.7498/aps.46.1535
    [18] 蒋开明, 施发健, 林宗涵. 巡游电子反铁磁性的变分泛函积分方法. 物理学报, doi: 10.7498/aps.44.1595
    [19] 韩飞, 马本堃. 外场存在时界面生长的重整化群研究. 物理学报, doi: 10.7498/aps.42.1812
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  41
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-14

/

返回文章
返回