-
对于双层Ruddlesden-Popper相镍酸盐La3Ni2O7,近期的实验研究表明,在超导区,随着压力增大,其超导转变温度从18 GPa压力下的83 K单调下降,表现出近直角三角形的超导转变温度-压力相图,与铜氧化物超导体和铁基超导体中掺杂或压力下的穹顶形超导相图不同.解释该反常相图对揭示La3Ni2O7的超导机制至关重要.由于电声耦合机制无法解释镍基超导体的高超导转变温度,因此,本文从巡游电子和局域自旋图像出发,探讨超导转变温度的压力依赖性.通过将理论结果与实验结果进行对比,为揭示其超导机制提供线索.Recent experimental studies on the bilayer Ruddlesden-Popper phase nickelate La3Ni2O7 have revealed that in the superconducting region, its superconducting transition temperature decreases monotonically from 83 K at 18 GPa with increasing pressure, exhibiting a nearly right-triangular superconducting transition temperature-pressure phase diagram distinct from the dome-shaped diagrams observed in cuprates and iron-based superconductors under doping or pressure. Understanding this anomalous phase diagram is crucial for elucidating the superconducting mechanism of La3Ni2O7. Since the electron-phonon coupling mechanism cannot account for the high superconducting transition temperatures in nickelate superconductors, this study investigates the pressure dependence of the transition temperature from the perspective of itinerant electrons picture and local spin picture. By combining the density functional theory (DFT) and the unbiased singular-mode functional renormalization group (SM-FRG) method, we find the pairing symmetry is consistently an s±-wave triggered by spin fluctuations which become increasingly weakened by pressure and consequently lead to decreasing superconducting transition temperature, in qualitative agreement with the experiment. On the other hand, we estimate that the pressure dependence in the local spin picture contradicts with experimental result. Thus, the pressure dependence of superconducting transition temperature is more in line with the itinerant electrons picture. Admittedly, we only made a rough estimation based on the local spin picture. It is expected to conduct further and more detailed research on the pressure dependence of superconducting transition temperature starting from the local spin picture, providing more insights into the underlying superconducting mechanism of La3Ni2O7.
-
Keywords:
- RP phase nickelate /
- Superconducting phase diagram /
- Functional renormalization group /
- Itinerant electrons picture /
- Local spin picture
-
[1] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature(London) 572 624
[2] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature(London) 621 493
[3] Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570
[4] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302
[5] Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20 1269
[6] Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, Qi Y 2024 J. Mater. Sci. Technol. 185 147
[7] Wang G, Wang N, Wang Y, Shi L, Shen X, Hou J, Ma H, Yang P, Liu Z, Zhang H, Dong X, Sun J, Wang B, Jiang K, Hu J, Uwatoko Y, Cheng J 2023 arXiv: 2311.08212[cond-mat.supr-con]
[8] Wang L, Li Y, Xie S Y, Liu F, Sun H, Huang C, Gao Y, Nakagawa T, Fu B, Dong B, Cao Z, Yu R, Kawaguchi S I, Kadobayashi H, Wang M, Jin C, Mao H k, Liu H 2024 J. Am. Chem. Soc. 146 7506
[9] Zhou Y, Guo J, Cai S, Sun H, Wang P, Zhao J, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H, Sun L 2025 Matter Radiat. Extremes 10 027801
[10] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q, Si L, Jin K j, Guo E J 2024 Commun. Mater. 5 32
[11] Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503
[12] Wang H, Chen L, Rutherford A, Zhou H, Xie W 2024 Inorg. Chem. 63 5020
[13] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature(London) 630 847
[14] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
[15] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040
[16] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
[17] Lei Y, Wang Y, Song J, Ge J, Wu D, Zhang Y, Li C 2024 Chin. Phys. B 33 096801
[18] Shen Y 2024 Acta Phys. Sin. 73 197104
[19] Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403
[20] Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001
[21] Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505
[22] Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002
[23] Gu Y, Le C, Yang Z, Wu X, Hu J 2025 Phys. Rev. B 111 174506
[24] Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501
[25] Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402
[26] Cao Y, Yang Y f 2024 Phys. Rev. B 109 L081105
[27] Chen X, Jiang P, Li J, Zhong Z, Lu Y 2025 Phys. Rev. B 111 014515
[28] Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002
[29] Lu C, Pan Z, Yang F, Wu C 2024 Phys. Rev. Lett. 132 146002
[30] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470
[31] Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511
[32] Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, Si Q 2023 Phys. Rev. B 108 214522
[33] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502
[34] Yang Y f, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108
[35] Jiang K, Wang Z, Zhang F C 2024 Chin. Phys. Lett. 41 017402
[36] Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501
[37] Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154
[38] Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504
[39] Xia C, Liu H, Zhou S, Chen H 2025 Nat. Commun. 16 1054
[40] Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114
[41] Qu X Z, Qu D W, Li W, Su G 2023 arXiv: 2311.12769[cond-mat.str-el]
[42] Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108
[43] Wang Y, Jiang K, Wang Z, Zhang F C, Hu J 2024 Phys. Rev. B 110 205122
[44] Fan Z, Zhang J F, Zhan B, Lv D, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514
[45] Luo Z, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61
[46] Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401
[47] Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403
[48] Jiang R, Hou J, Fan Z, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503
[49] Huo Z, Luo Z, Zhang P, Yang A, Liu Z, Tao X, Zhang Z, Guo S, Jiang Q, Chen W, Yao D X, Duan D, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411
[50] Yang Y F 2025 Chin. Phys. Lett. 42 017301
[51] Zhang F C, Rice T M 1988 Phys. Rev. B 37 3759
[52] Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80
[53] McMillan W L 1968 Phys. Rev. 167 331
[54] Zhan J, Le C, Wu X, Hu J 2025 arXiv: 2503.18877[cond-mat.supr-con]
[55] Wang Y, Chen Z, Zhang Y, Jiang K, Hu J 2025 arXiv: 2501.08536[cond-mat.str-el]
[56] Zhan J, Gu Y, Wu X, Hu J 2025 Phys. Rev. Lett. 134 136002
[57] Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001
[58] Liu Y Q, Wang D, Wang Q H 2025 arXiv: 2505.07341[cond-mat.supr-con]
[59] Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501
[60] Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, Chen Z 2025 Nature (London) 640 641
[61] Chen Z, Huang H, Xue Q 2025 Acta Phys. Sin. 74 097401
[62] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature (London) 638 935
[63] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H k, Wang M 2025 Natl. Sci. Rev nwaf220
[64] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[65] Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17
[66] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
[67] Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372[cond-mat.supr-con]
[68] Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z H, Qian T, Lin J, He J, Sun Y J, Chen Z, Xue Q K 2025 Natl. Sci. Rev. nwaf205
[69] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[70] Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945
[71] Vaugier L, Jiang H, Biermann S 2012 Phys. Rev. B 86 165105
计量
- 文章访问数: 41
- PDF下载量: 11
- 被引次数: 0