-
量子弱测量基于弱值放大与后选择效应,在微小物理量表征和高灵敏传感计等方面具有重要作用,但目前受限于单重弱相互作用与单一测量通道,存在测量精度不足和多参数并行化受限的问题.本文从理论和实验上研究了基于可调谐光谱和迭代弱相互作用的双参量量子弱测量,实现了M参量和I参量的高精度相位差测量.理论分析表明,通过调控光谱宽度和多重弱相互作用可增强弱值放大效应;在满足弱测量条件$k / 2 \ll \rho \ll 1$时,N重迭代弱相互作用使动量M和强度I参量的测量精度较单重弱相互作用提升N倍.实验采用三重弱相互作用:当光谱谱宽为750 GHz时,动量M参量实现了4.06× 10-8 rad的相位差测量精度,测量精度提升至原来的2.78倍;当谱宽降至500 kHz时,I参量实现5.99× 10-7rad测量精度,测量精度提升了2.97倍,并保持了17.4 dB的信噪比;双参量测量精度的提升均与理论3倍符合良好.当谱宽为125 GHz时,M和I参量均实现了10-6-10-7rad量级测量,测量精度较传统单重弱测量提升约3倍.该方案利用双参量在百kHz至亚太赫兹(sub-terahertz)可调光谱范围内实现了高精度且高信噪比相位差测量,光子利用率较传统单重弱测量提升3倍,为相位非经典精密传感提供了兼具多参量并行和宽光谱适配性的可行方案.Quantum weak measurement technology has significantly advanced the detection limits of quantum precision measurement due to its minimal disturbance to the measured system and the weak value amplification (WVA) effect. This technique has been successfully applied in phase difference and time difference measurements, leading to a series of important achievements. Previous standard weak measurement typically utilize only a single momentum parameter as the measurement pointer and rely on a single weak interaction (SWI) to detect minute phase shifts. Although some studies have attempted to introduce quantum resources to further enhance the amplification factor and measurement precision, the practical application is hindered by thechallenges associated with quantum state preparation. Therefore, practical quantum weak measurement systems still require in-depth research and exploration to overcome these technical bottlenecks.
In this study, we propose and experimentally validate a dual -parameter quantum weak measurement scheme based on tunable spectral control and iterative weak interactions. Theoretical analysis demonstrates that adjusting the spectral width and the number of weak interactions, can effectively enhance the weak value amplification effect. Experimentally, a phase weak measurement system based on iterative weak interactions (IWI) was constructed using a tunable light source as the optical input. The setup incorporates three sets of half-wave plates (HWP) to realize triple weak interactions. By fixing the postselection angle and rotating the HWP to introduce a weak phase delay, high-precision detection of the phase shift is achieved by monitoring both the spectral shift and light intensity variations. Experimental results indicate that at a spectral width of 700 GHz, the momentum parameter M achieves the 4.06 × 10-8 rad optimal phase difference measurement accuracy, which is 2.78 times higher than that of single weak interactions (SWI). As the spectral width decreases, the signal-to-noise ratio gradually degrades, and the shift signal of parameter M is submerged in the electronic noise of the spectrometer, necessitating a switch to the intensity parameter I for detection. When a narrow-linewidth source with a linewidth of 500 kHz isemployed, the intensity parameter I enables phase difference measurements at the level of 5.99×10-7 rad while maintaining a high signal-to-noise ratio (SNR) of 17.4 dB. Its measurement precision is 2.97 times higher than that of SWI. In optical experiments, the optical phase can serve as a proxy for other physical quantities such as displacement, temperature, and magnetic field strength. Therefore, this scheme provides crucial technical support for practical enhanced quantum precision sensing.-
Keywords:
- quantum optics /
- iterative weak measurement /
- tunable spectrum /
- dual-parameter /
- phase difference measurement
-
[1] Piacentini F, Avella A, Levi M, Gramegna M, Brida G, Degiovanni I 2016 Phys. Rev. Lett. 117 170402
[2] Chen J S, Hu M J, Hu X M, Liu B H, Huang Y F,Li C F, Guo C G, Zhang Y S 2019 Opt. Express 27 6089-6097
[3] Pan A K. 2020 Phys. Rev. A 102 032206.
[4] Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H 2022 Nat. Commun. 13 5318
[5] Zhang Y X, Wu S J, Chen Z B 2016 Phys. Rev. A 93 032128
[6] Shi S, Ding D S, Zhou Z Y, Li Y, Zhang W, Shi B S 2015 Appl. Phys. Lett. 106 261110
[7] Zhang X D, Yu Y F, Zhang Z M 2021 Acta Phys. Sin. 70 240302(in Chinese)[张晓东,於亚飞,张智明物理学报, 2021, 70 240302]
[8] Luo L, He Y, Liu X, Li Z X, Duan P, Zhang Z Y 2020 Opt. Express 28, 6408-6416
[9] Kim Y, Yoo S Y, Kim Y H 2022 Phys. Rev. Lett. 128 040503
[10] Rebufello E, Piacentini F, Avella A, Souza M A, Gramegna M, Dziewior J, Cohen E, Vaidman L, Degiovanni I P, Genovese M 2021 Light Sci. Appl. 10 106
[11] Guo Y Q, Zhang H J, Guo X M, Zhang Y C, Zhang T C 2022 Opt. Express 30 8461
[12] Zhang L J, Datta A, Walmsley L A 2015 Phys. Rev. Lett. 114 210801
[13] Luo L, Xie L G, Qiu J D, Zhou X X, Liu X, Li Z X, He Y, Zhang Z Y, Sun H D 2019 Appl. Phys. Lett. 114 111104
[14] Combes J, Ferrie C, Zhang J, Caves C M 2014 Phys. Rev. A 89 052117
[15] Combes, Ferrie C 2015 Phys. Rev. A 92 022117
[16] Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351
[17] Ferrie C, Combes J 2014 Phys. Rev. Lett. 112 040406
[18] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604-033607
[19] Hosten and P. Kwiat 2008 Science 319 787-790
[20] Qin Y, Li Y, Feng Y, Liu Z, He H 2010 Opt. Express 18 16832-16839
[21] Li J, Tang T T, Luo L, Shen J, Li C Y, Qin J, Bi L. 2019 Photon. Res 7 1014-1018
[22] Xu L, Liu Z X, Datta A, Knee G C, Lundeen J S, Lu Y Q, Zhang L J 2020 Phys. Rev. Lett. 125 080501
[23] Xia B K, Huang J Z, Li H J, Liu M M, Xiao T L, Fang C, Zeng G H 2022 Photonics Res. 10 2816-2827
[24] Xia B K, Huang J Z, Li H J, Wang H, Zeng G H 2023 Nat. Commun. 14 1021
[25] Zhang Y L, Li D M, He Y H, Shen Z Y, He Q H 2016 Opt. Lett. 41 5409-5412
[26] Xu Y, Shi L X, Guan T, Zhong S Y, Li D G, Guo C X, Yang Y X, Wang X N, Li Z Y, He Y H, Xie L Y, Gan Z H 2019 Appl. Phys. Lett.114 181901
[27] Long W J, Pan J T, Guo X Y, Liu X H, Chen Z 2019 Photon. Res. 7 1273-1278
[28] Luo C M, Tang P, Zhang Y, Wang T, Deng Y, Zhang J G 2022 Acta Opt. Sin. 42 7(in Chinese)[罗朝明,唐鹏,张勇,万婷,邓艳,张景贵2022光学学报 42 7]
[29] Brunner N, Simon C. 2010 Phys. Rev. Lett.105 010405
[30] Li C F, Xu X Y, Tang J S, Xu J S, Guo G C. 2011 Phys. Rev. A 83 044102
[31] Pang S S, Brun T A. 2015 Phys. Rev. Lett. 115 120401
[32] Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F, Guo G C 2016 Phys. Rev. A 94 053843
[33] Chen J S, Liu B H, Hu M J, Hu X M, Li C F, Guo G C, Zhang Y S 2019 Phys. Rev. A 99 032120
[34] Xing M Y, Guo X M, Zhang H J, Zhang J C, Guo Y Q 2023 Chin. J. Lasers 50 612002(in Chinese)[邢梦宇,郭晓敏,张浩杰,张建超,郭龑强2023中国激光50 0612002]
[35] Huang J Z, Li Y J, Fang C, Li H J, Zeng G H 2019 Phys. Rev. A 100 012109
[36] Wang Y S, Zhang W S, Chen S Z, Wen S C, Luo H L 2022 Phys. Rev. A 105 033521
[37] Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2017 Appl. Phys. Lett. 110 071105
[38] Li Z X, Qiu J D, Xie L G, Luo L, Liu X, Zhang Z Y, Ran C L, Du J L 2018 Appl. Phys. Lett. 113 191103
[39] Li D, Shen Z, He Y H, Zhang Y L, Chen Z L, Ma H 2016 Appl. Opt. 55 1697-1702
[40] Zhang J C, Guo X M, Hou J H, Zhao J, Guo Y Q 2025 Chin. J. Lasers 52 3(in Chinese)[张建超,郭晓敏,侯佳慧,赵洁,郭龑强2025中 国激光52 03]
[41] Zhu X M, Zhang Y X, Pang Y X, Qiao S S, Liu Q H, Wu S J 2011 Phys. Rev. A 84 052111
[42] Vaidman L. 2017 Phil. Trans. R. Soc. A 375 20160395
计量
- 文章访问数: 28
- PDF下载量: 2
- 被引次数: 0








下载: