搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐光谱双参量复用量子弱测量

王奥 张敏 高淑琪 刘清晨 何力 郭晓敏 郭龑强 肖连团

引用本文:
Citation:

可调谐光谱双参量复用量子弱测量

王奥, 张敏, 高淑琪, 刘清晨, 何力, 郭晓敏, 郭龑强, 肖连团

Tunable Spectrum Dual-Parameter Multiplexed Quantum Weak Measurement

Wang Ao, Zhang Min, Gao Shuqi, Liu Qingchen, He Li, Guo Xiaomin, Guo Yanqiang, Xiao Liantuan
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 量子弱测量基于弱值放大与后选择效应,在微小物理量表征和高灵敏传感计等方面具有重要作用,但目前受限于单重弱相互作用与单一测量通道,存在测量精度不足和多参数并行化受限的问题.本文从理论和实验上研究了基于可调谐光谱和迭代弱相互作用的双参量量子弱测量,实现了M参量和I参量的高精度相位差测量.理论分析表明,通过调控光谱宽度和多重弱相互作用可增强弱值放大效应;在满足弱测量条件$k / 2 \ll \rho \ll 1$时,N重迭代弱相互作用使动量M和强度I参量的测量精度较单重弱相互作用提升N倍.实验采用三重弱相互作用:当光谱谱宽为750 GHz时,动量M参量实现了4.06× 10-8 rad的相位差测量精度,测量精度提升至原来的2.78倍;当谱宽降至500 kHz时,I参量实现5.99× 10-7rad测量精度,测量精度提升了2.97倍,并保持了17.4 dB的信噪比;双参量测量精度的提升均与理论3倍符合良好.当谱宽为125 GHz时,M和I参量均实现了10-6-10-7rad量级测量,测量精度较传统单重弱测量提升约3倍.该方案利用双参量在百kHz至亚太赫兹(sub-terahertz)可调光谱范围内实现了高精度且高信噪比相位差测量,光子利用率较传统单重弱测量提升3倍,为相位非经典精密传感提供了兼具多参量并行和宽光谱适配性的可行方案.
    Quantum weak measurement technology has significantly advanced the detection limits of quantum precision measurement due to its minimal disturbance to the measured system and the weak value amplification (WVA) effect. This technique has been successfully applied in phase difference and time difference measurements, leading to a series of important achievements. Previous standard weak measurement typically utilize only a single momentum parameter as the measurement pointer and rely on a single weak interaction (SWI) to detect minute phase shifts. Although some studies have attempted to introduce quantum resources to further enhance the amplification factor and measurement precision, the practical application is hindered by thechallenges associated with quantum state preparation. Therefore, practical quantum weak measurement systems still require in-depth research and exploration to overcome these technical bottlenecks.
    In this study, we propose and experimentally validate a dual -parameter quantum weak measurement scheme based on tunable spectral control and iterative weak interactions. Theoretical analysis demonstrates that adjusting the spectral width and the number of weak interactions, can effectively enhance the weak value amplification effect. Experimentally, a phase weak measurement system based on iterative weak interactions (IWI) was constructed using a tunable light source as the optical input. The setup incorporates three sets of half-wave plates (HWP) to realize triple weak interactions. By fixing the postselection angle and rotating the HWP to introduce a weak phase delay, high-precision detection of the phase shift is achieved by monitoring both the spectral shift and light intensity variations. Experimental results indicate that at a spectral width of 700 GHz, the momentum parameter M achieves the 4.06 × 10-8 rad optimal phase difference measurement accuracy, which is 2.78 times higher than that of single weak interactions (SWI). As the spectral width decreases, the signal-to-noise ratio gradually degrades, and the shift signal of parameter M is submerged in the electronic noise of the spectrometer, necessitating a switch to the intensity parameter I for detection. When a narrow-linewidth source with a linewidth of 500 kHz isemployed, the intensity parameter I enables phase difference measurements at the level of 5.99×10-7 rad while maintaining a high signal-to-noise ratio (SNR) of 17.4 dB. Its measurement precision is 2.97 times higher than that of SWI. In optical experiments, the optical phase can serve as a proxy for other physical quantities such as displacement, temperature, and magnetic field strength. Therefore, this scheme provides crucial technical support for practical enhanced quantum precision sensing.
  • [1]

    Piacentini F, Avella A, Levi M, Gramegna M, Brida G, Degiovanni I 2016 Phys. Rev. Lett. 117 170402

    [2]

    Chen J S, Hu M J, Hu X M, Liu B H, Huang Y F,Li C F, Guo C G, Zhang Y S 2019 Opt. Express 27 6089-6097

    [3]

    Pan A K. 2020 Phys. Rev. A 102 032206.

    [4]

    Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H 2022 Nat. Commun. 13 5318

    [5]

    Zhang Y X, Wu S J, Chen Z B 2016 Phys. Rev. A 93 032128

    [6]

    Shi S, Ding D S, Zhou Z Y, Li Y, Zhang W, Shi B S 2015 Appl. Phys. Lett. 106 261110

    [7]

    Zhang X D, Yu Y F, Zhang Z M 2021 Acta Phys. Sin. 70 240302(in Chinese)[张晓东,於亚飞,张智明物理学报, 2021, 70 240302]

    [8]

    Luo L, He Y, Liu X, Li Z X, Duan P, Zhang Z Y 2020 Opt. Express 28, 6408-6416

    [9]

    Kim Y, Yoo S Y, Kim Y H 2022 Phys. Rev. Lett. 128 040503

    [10]

    Rebufello E, Piacentini F, Avella A, Souza M A, Gramegna M, Dziewior J, Cohen E, Vaidman L, Degiovanni I P, Genovese M 2021 Light Sci. Appl. 10 106

    [11]

    Guo Y Q, Zhang H J, Guo X M, Zhang Y C, Zhang T C 2022 Opt. Express 30 8461

    [12]

    Zhang L J, Datta A, Walmsley L A 2015 Phys. Rev. Lett. 114 210801

    [13]

    Luo L, Xie L G, Qiu J D, Zhou X X, Liu X, Li Z X, He Y, Zhang Z Y, Sun H D 2019 Appl. Phys. Lett. 114 111104

    [14]

    Combes J, Ferrie C, Zhang J, Caves C M 2014 Phys. Rev. A 89 052117

    [15]

    Combes, Ferrie C 2015 Phys. Rev. A 92 022117

    [16]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [17]

    Ferrie C, Combes J 2014 Phys. Rev. Lett. 112 040406

    [18]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604-033607

    [19]

    Hosten and P. Kwiat 2008 Science 319 787-790

    [20]

    Qin Y, Li Y, Feng Y, Liu Z, He H 2010 Opt. Express 18 16832-16839

    [21]

    Li J, Tang T T, Luo L, Shen J, Li C Y, Qin J, Bi L. 2019 Photon. Res 7 1014-1018

    [22]

    Xu L, Liu Z X, Datta A, Knee G C, Lundeen J S, Lu Y Q, Zhang L J 2020 Phys. Rev. Lett. 125 080501

    [23]

    Xia B K, Huang J Z, Li H J, Liu M M, Xiao T L, Fang C, Zeng G H 2022 Photonics Res. 10 2816-2827

    [24]

    Xia B K, Huang J Z, Li H J, Wang H, Zeng G H 2023 Nat. Commun. 14 1021

    [25]

    Zhang Y L, Li D M, He Y H, Shen Z Y, He Q H 2016 Opt. Lett. 41 5409-5412

    [26]

    Xu Y, Shi L X, Guan T, Zhong S Y, Li D G, Guo C X, Yang Y X, Wang X N, Li Z Y, He Y H, Xie L Y, Gan Z H 2019 Appl. Phys. Lett.114 181901

    [27]

    Long W J, Pan J T, Guo X Y, Liu X H, Chen Z 2019 Photon. Res. 7 1273-1278

    [28]

    Luo C M, Tang P, Zhang Y, Wang T, Deng Y, Zhang J G 2022 Acta Opt. Sin. 42 7(in Chinese)[罗朝明,唐鹏,张勇,万婷,邓艳,张景贵2022光学学报 42 7]

    [29]

    Brunner N, Simon C. 2010 Phys. Rev. Lett.105 010405

    [30]

    Li C F, Xu X Y, Tang J S, Xu J S, Guo G C. 2011 Phys. Rev. A 83 044102

    [31]

    Pang S S, Brun T A. 2015 Phys. Rev. Lett. 115 120401

    [32]

    Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F, Guo G C 2016 Phys. Rev. A 94 053843

    [33]

    Chen J S, Liu B H, Hu M J, Hu X M, Li C F, Guo G C, Zhang Y S 2019 Phys. Rev. A 99 032120

    [34]

    Xing M Y, Guo X M, Zhang H J, Zhang J C, Guo Y Q 2023 Chin. J. Lasers 50 612002(in Chinese)[邢梦宇,郭晓敏,张浩杰,张建超,郭龑强2023中国激光50 0612002]

    [35]

    Huang J Z, Li Y J, Fang C, Li H J, Zeng G H 2019 Phys. Rev. A 100 012109

    [36]

    Wang Y S, Zhang W S, Chen S Z, Wen S C, Luo H L 2022 Phys. Rev. A 105 033521

    [37]

    Qiu X D, Xie L G, Liu X, Luo L, Zhang Z Y, Du J L 2017 Appl. Phys. Lett. 110 071105

    [38]

    Li Z X, Qiu J D, Xie L G, Luo L, Liu X, Zhang Z Y, Ran C L, Du J L 2018 Appl. Phys. Lett. 113 191103

    [39]

    Li D, Shen Z, He Y H, Zhang Y L, Chen Z L, Ma H 2016 Appl. Opt. 55 1697-1702

    [40]

    Zhang J C, Guo X M, Hou J H, Zhao J, Guo Y Q 2025 Chin. J. Lasers 52 3(in Chinese)[张建超,郭晓敏,侯佳慧,赵洁,郭龑强2025中 国激光52 03]

    [41]

    Zhu X M, Zhang Y X, Pang Y X, Qiao S S, Liu Q H, Wu S J 2011 Phys. Rev. A 84 052111

    [42]

    Vaidman L. 2017 Phil. Trans. R. Soc. A 375 20160395

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, doi: 10.7498/aps.72.20231321
    [3] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, doi: 10.7498/aps.71.20220675
    [4] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, doi: 10.7498/aps.71.20221289
    [5] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, doi: 10.7498/aps.71.20221286
    [6] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, doi: 10.7498/aps.69.20200107
    [7] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, doi: 10.7498/aps.67.20180845
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, doi: 10.7498/aps.66.244205
    [9] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, doi: 10.7498/aps.64.224221
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, doi: 10.7498/aps.63.060301
    [11] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, doi: 10.7498/aps.63.030301
    [12] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, doi: 10.7498/aps.63.110303
    [13] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, doi: 10.7498/aps.62.200302
    [14] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, doi: 10.7498/aps.62.030302
    [15] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, doi: 10.7498/aps.61.210302
    [16] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, doi: 10.7498/aps.60.100301
    [17] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, doi: 10.7498/aps.58.722
    [18] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, doi: 10.7498/aps.53.4070
    [19] 张桂明, 李悦科, 高云峰. 非等同双原子与双模腔场拉曼相互作用模型的腔场谱. 物理学报, doi: 10.7498/aps.53.3739
    [20] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量. 物理学报, doi: 10.7498/aps.49.1484
计量
  • 文章访问数:  28
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回