-
量子非局域性作为一种极具价值的量子资源, 在诸多量子信息处理任务中扮演着不可或缺的关键角色. 对非局域性进行精准表征与有效探测, 始终是量子信息理论研究与实验探索中非常有挑战性的重要课题. 如何在结构复杂的多体量子系统里准确识别并验证量子非局域性现象, 如何设计出更为高效的非局域性探测方法, 已成为亟待解决的重要科学问题. 本文致力于多体量子非局域性的探测问题, 着重探究如何借助Svetlichny不等式来实现多体量子非局域性的探测. 首先探讨了Svetlichny不等式的最大量子违背, 构造了达到了Svetlichny不等式的最大量子违背的量子态与可观测量集, 展示了如何构造其他的量子态与可观测量集来实现它的最大量子违背, 以此阐明了实现Svetlichny不等式最大量子违背的量子态和可观测量集是不唯一的. 其次, 为了寻找更多违背Svetlichny不等式的量子态和可观测量集, 借助量子态的神经网络表示构建了神经网络量子态, 通过优化算法对网络参数进行优化来实现Svetlichny不等式的违背, 进而探测到非局域态. 通过与经典的Nelder-Mead单纯形法对比, 发现量子变分蒙特卡罗(Variational Monte Carlo, VMC)方法在效率与精度上更适配基于神经网络量子态的非局域性探测, 并在不同哈密顿量下成功实现了借助神经网络量子态与VMC方法对多体量子纯态非局域性的探测. 本研究不仅证实了基于神经网络量子态与VMC方法的多体量子非局域性探测在理论上与技术上的可行性, 同时也为非局域性探测领域提供了颇具价值的研究新见解, 更为借助神经网络解决复杂的量子多体问题开拓了全新的研究思路.
-
关键词:
- 量子非局域性 /
- 神经网络量子态 /
- Svetlichny不等式 /
- VMC /
- 探测
Quantum nonlocality, as an invaluable quantum resource, plays an indispensable key role in numerous quantum information processing tasks. Accurate characterization and effective detection of nonlocality have always been important and challenging topics in theoretical research and experimental exploration of quantum information. How to precisely identify and verify the phenomenon of quantum nonlocality in complex many-body quantum systems, and how to design more efficient detection methods for nonlocality, have become important scientific issues that need to be solved urgently. This paper is dedicated to the detection of multipartite quantum nonlocality, with a focus on exploring how to achieve the detection of multipartite quantum nonlocality using the Svetlichny inequality. Firstly, the maximum quantum violation of the Svetlichny inequality is discussed. Through construction, a quantum state $\rho_0$ and a set of observables $\mathcal{A}_0$ are obtained, which achieve the maximum quantum violation of the Svetlichny inequality. It is also demonstrated how to construct other quantum states and sets of observables to achieve its maximum violation, thereby clarifying that the quantum states and sets of observables that achieve the maximum quantum violation of the Svetlichny inequality are not unique. Secondly, in order to find more quantum states and sets of observables that violate the Svetlichny inequality, the corresponding Hamiltonian was constructed using the Svetlichny operator. This core issue of finding quantum states that violate the Svetlichny inequality was ingeniously transformed into solving the ground state of this Hamiltonian. Leveraging the powerful function approximation capability of neural networks, neural network quantum states were constructed. Two optimization algorithms, the Nelder-Mead simplex method and Quantum Variational Monte Carlo (VMC), were respectively adopted to optimize the network parameters in order to find the ground state energy and ground state of the Hamiltonian, thereby achieving the violation of the Svetlichny inequality and ultimately detecting nonlocal states. To ensure the efficiency and accuracy of the detection method, this paper conducts a comparative study of different optimization methods. By comparing the Nelder-Mead simplex method with the VMC method, it is found that the VMC method is more suitable for nonlocality detection based on neural network quantum states in terms of efficiency and accuracy, providing reliable computational support for the detection of many-body quantum nonlocality and the violation of the Svetlichny inequality. To verify the validity and universality of the proposed method, the nonlocality of multipartite quantum pure states were detected using neural network quantum states and the VMC method under different Hamiltonians. The results demonstrate that this method successfully captures violations of the Svetlichny inequality in many-body quantum systems, thereby achieving effective detection of multipartite quantum nonlocality. This fully confirms the validity and universal potential of the VMC method in nonlocality detection based on neural network quantum states. This study not only verifies the theoretical and technical feasibility of the detection of multipartite quantum nonlocality based on neural network quantum states and the VMC method, but also provides valuable new insights for the field of nonlocality detection. More importantly, it opens up a new research avenue for solving complex quantum many-body problems using neural networks.-
Keywords:
- nonlocality /
- neural network quantum state /
- Svetlichny inequality /
- VMC /
- detection
-
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G, Crepeau C 1993 Phys. Rev. Lett. 70 1895
[3] Mattle K, Weinfurter H, Kwiat P G 1996 Phys. Rev. Lett. 76 4656
[4] Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829
[5] Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025
[6] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
[7] Bell J S 1964 Physics 1 195
[8] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880
[9] Aspect A, Grangier P, Roger G 1981 Phys. Rev. Lett. 47 460
[10] Tittel W, Brendel J, Zbinden H, Gisin N 1998 Phys. Rev. Lett. 81 3563
[11] Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[12] Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C, Wineland D J 2001 Nature 409 791
[13] Giustina M, Mech A, Ramelow S, Wittmann B, Kofler J, Beyer J, Lita A, Calkins B, Gerrits T, Nam S W, Ursin R, Zeilinger A 2013 Nature 497 227
[14] Babai L, FortnowL, Lund C 1991 Comput. Complex 1 3
[15] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419
[16] Tura J, Augusiak R, Sainz A B, Vértesi T, Lewenstein M, Acin A 2014 Science 344 1256
[17] Tura J, Augusiak R, Sainz A B, Luecke B, Klempt C, Lewenstein M, Acin A 2015 Ann. Phys. 362 370
[18] Tura J, Cuevas G D L, Augusiak R, Lewenstein M, Acin A, Cirac J I 2017 Phys. Rev. X 7 021005
[19] Wagner S, Schmied R, Fadel M, Treutlein P, Sangouard N, Bancal J D 2017 Phys. Rev. Lett. 119 170403
[20] Schmied R, Bancal J D, Allard B, Fadel M, Scarani V, Treutlein P, Sangouard N 2016 Science 352 441
[21] Hezaveh Y D, Levasseur L P, Marshall P J 2017 Nature 548 555
[22] Abbott B P, et al 2016 Phys. Rev. Lett. 116 061102
[23] Kalinin S V, Sumpter B G, Archibald R K 2015 Nat. Mater. 14 973
[24] Carleo G, Troyer M 2017 Science 355 602
[25] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195
[26] Gao X, Duan L M 2017 Nat. Commun. 8 662
[27] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. B 96 195145
[28] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021
[29] Deng D L 2018 Phys. Rev. Lett. 120 240402
[30] Carleo G 2018 Nat. Commun. 9 5322
[31] Lu S, Gao X, Duan L M 2019 Phys. Rev. B 99 155136
[32] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C, Guo G P 2019 Adv. Quantum Technol. 2 1800077
[33] Nagy A, Savona V 2019 Phys. Rev. Lett. 122 250501
[34] J Hartmann M, Carleo G 2019 Phys. Rev. Lett. 122 250502
[35] Vicentini F, Biella A, Regnault N, Ciuti C 2019 Phys. Rev. Lett. 122 250503
[36] Yang Y, Cao H X, Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312
[37] Wang J Q, Wu H Q, He R Q, Lu Z Y 2024 Phys. Rev. B 109 245120
[38] El Ayachi F, Ait Mansour H, El Baz M 2025 Phys. Scr. 100 016001
[39] Jones N S, Linden N, Massar S 2005 Phys. Rev. A 71 042329
[40] Kolmogorov A N 1963 Transl. Am. Math. Soc. 28 55
[41] Roux N L, Bengio Y 2008 Neural Comput. 20 1631
计量
- 文章访问数: 28
- PDF下载量: 0
- 被引次数: 0








下载: