搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲星时与原子频率基准结合的时间标准

杨廷高 童明雷 胡悦

引用本文:
Citation:

脉冲星时与原子频率基准结合的时间标准

杨廷高, 童明雷, 胡悦

Pulsar Time and Atomic Frequency standards Combined Time-scale

YANG Tinggao, TONG Minglei, HU Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 利用国际脉冲星计时阵(IPTA)第二次释放的版本A中62颗脉冲星计时资料构建了综合脉冲星时EPT62。EPT62的构建充分考虑了每颗星的计时噪声,采用包括Cholesky变换的加权广义最小二乘算法,提取出国际原子时TAI的误差信号EPT62-TAI。国际权度局(BIPM)实时性地发布原子频率基准与TAI的频率差数据,为时间标准的构建提供定义国际单位制SI秒的频率基准。采用结合平滑滤波器能够将EPT62-TAI跟原子频率基准与TAI的频率差结合起来,从而得到脉冲星时与原子频率基准结合的时间标准CPA。描述了CPA构建过程,详细比较了CPA与BIPM构建的地球时的性能。CPA具有综合脉冲星时的长期频率稳定度,又有原子频率基准的准确度,因而也可用作地球时。最后,简洁地给出问题讨论与结论。
    A new time-scale EPT62 has been constructed based on the observations of 62 millisecond pulsars in the Version A of second data release from the International Pulsar Timing Array (IPTA). Timing noise was analysed carefully for each pulsar and then weighted generalised least square algorithm through Cholesly transformatin was carried out to extract clock error of referenced international atomic time-scale (TAI). The EPT62 spans 29 years and the lock difference EPT62-TAI is given in the Fig. 1. The clock fifference between terrestrial time TT(BIPM2015) and TAI is also shown in the Fig.1. EPT62-TAI and TT(BIPM2015)-TAI show generally similar trends except early few data ponts. Because available observational data are much sparse before MJD 50215 the corresponding EPT62-TAI data points in this period have lager errorbar. The frequency difference data between primary and secondary frequency standards (psfs) and TAI were published in real-time by the Bureau International des Poids et Mesures (BIPM) to supply frequency standard defining SI second for constructing time-scale. The combined smoothing filter was employed to combine clock difference EPT62-TAI and frequency difference between frequency standards and TAI. Then pulsar time and atomic frequency standards combined time-scale (CPA) was derived through the combined smoothing filter. The clock difference CPA-TAI is shown with black curve in the Fig. 1. For the frequency difference curves of psfs-TAI clock difference before and after combined smoothing see Fig. 5 in the text. The constructing process of the CPA was discribed. The property of the CPA was compared in detail with terrestrial time TT(BIPMxxxx). The CPA combined long term frequecy stabily of the EPT62 and acuracy of the atomic frequency standards. In general the property of the CPA is compatible to TT(BIPMxxxx). The comparison of fractional frequecy stability σz curves for EPT62-TAI, CPA-TAI and TT(BIPM2015)-TAI is shown in the Fig. 4 in the text. The CPA can also be used as terrestrial time as TT(BIPMxxxx). Terrestrial time TT(BIPMxxxx) is available one year later whereas CPT may be computed and kept in “real-time” in the future. Finally a brief discussion and some conclusions are given.
  • [1]

    Guinot B 1988 Astron. Astrophys.,192,370

    [2]

    Foster R S, Backer D C 1990 The Astronomical Journal,361,300

    [3]

    Verbiest J P W, Lentati L, Hobbs G, van Haasteren R, Demorest P B, Janssen G H, Wang J B, Desvignes G, Caballero R N, Keith M J, Champion D J, Arzoumanian Z,Babak S,Bassa C G,Bhat N D R,Brazier A,Brem P, Burgay M, Burke-Spolaor S, Chamberlin S J, Chatterjee S, Christy B, Cognard I, Cordes J M, Dai S,Dolch T,Ellis J A, Ferdman R D, Fonseca E, Gair J R, Garver-Daniels N E,Gentile P, Gonzalez M E,Graikou E,Guillemot L,Hessels J W T, Jones G, Karuppusamy R,Kerr M,Kramer M,Lam M T, Lasky P D,Lassus A,Lazarus P,Lazio T J W, Lee K J, Levin L,Liu K, Lynch R S,Lyne A G,Mckee J,McLaughlin M A,McWilliams S T, Madison D R,Manchester R N,Mingarelli C M F,Nice D J,lowski,Palliyaguru N T,Pennucci T T,Perera B B P,Perrodin D,Possenti A,Petiteau A, Ransom S M,Reardon D,Rosado P A,Sanidas S A,Sesana A,Shaifullah G,ShannonR M,Siemens X,Simon J,Smits R,Spiewak R,Stairs I H,Stappers B W,Stinebring D R,Stovall K,Swiggum J K,Taylor S R,Theureau G,Tiburzi C,Toomey L,Vallisneri M,van Straten W,Vecchio A,Wang Y,Wen L,You X P,Zhu W W and Zhu X J 2016 MNRAS,458,1267

    [4]

    Perera B B P,DeCesar M E,Demorest P B,Kerr M,Lentati L,Nice D J,Oslowski S,Ransom S M,Keith M J,Arzoumanian Z,Bailes M,Baker P T,Bassa C G,Bhat N D R,Brazier A,Burgay M,Burke-Spolaor S,Caballero R N,Champion D J,Chatterjee S,Chen S,Cognard I,Cordes J M,Crowter K,Dai S,Desvignes G,Dolch T,Ferdman R D,Ferrara E C,Fonseca E,Goldstein J M,Graikou E,Guillemot L,Hazboun J S,Hobbs G,Hu H,Islo K,Janssen G H,Karuppusamy R,Kramer M,Lam M T,Lee K J,Liu K,Luo J,Lyne A G,Manchester R N,McKee J W,McLaughlin M A,Mingarelli C M F,Parthasarathy A P,Pennucci T T,Perrodin D,Possenti A,Reardon D J,Russell C J,Sanidas S A,Sesana A,Shaifullah G,Shannon R M,Siemens X,Simon J,Spiewak R,Stairs I H,Stappers B W,Swiggum J K,Taylor S R,Theureau G,Tiburzi C,Vallisneri M,Vecchio A,Wang J B,Zhang S B, Zhang L,Zhu W W,and Zhu X J 2019 MNRAS,490,4666

    [5]

    Manchester R N 2011 Aip Conference Proceedings,Volume 1357,65

    [6]

    Hobbs G,Guo L,Caballero R N,Coles W,Lee K J,Manchester R N,Reardon D J,Matsakis D,Tong M L,Arzoumanian Z,Bailes M,Bassa C G,Bhat N D R,Brazier A,Burke-Spolaor S,Champion D J, Chatterjee S,Cognard I,Dai S,Desvignes G,Dolch T,Ferdman R D,Graikou E,Guillemot L,Janssen G H,Keith M J,Kerr M, Kramer M,Lam M T,Liu K,Lyne A,Lazio T J W,Lynch R,McKee J W, McLaughlin M A,Mingarelli C M F,Nice D J,Osłowski S,Pennucci T T,Perera B B P, Perrodin D,Possenti A,Russell C J,Sanidas S,Sesana A,Shaifullah G, Shannon R M,Simon J,Spiewak R,Stairs I H,Stappers B W,Swiggum J K,Taylor S R,Theureau G,Toomey L,van Haasteren R,Wang J B,Wang Y,and Zhu X J 2020 MNRAS,491,5951

    [7]

    Yang T G, Tong M L, Gao Y P 2022 RAA, 22, 105012

    [8]

    Zhang Z H, Tong M L, & Yang T G 2024 ApJ, 962, 2

    [9]

    Yang T G, Gao Y P, Tong M L,Li B,Zhao C S,Luo J T,Zhu X Z,Sun P F,Wei F 2023 Acta Aeronautica et Astronautica Sinica,44(1):526443(in Chinese) [杨廷高,高玉平,童明雷,李变,赵成仕,罗近涛,朱幸芝,孙鹏飞,魏飞 2023 航空学报 44(1):526443]

    [10]

    Vondrak J, Cepek A 2000 A&AS, 147, 347

    [11]

    Yang T G,Tong M L,Li B,Zhang Z H,Zhu X Z,Gao Y P 2025 RAA,25,025009 (13pp)

    [12]

    Keith M J,Coles W,Shannon R M,Hobbs G B,Manchester R N,Bailes M,Bhat N D R,Burke-Spolaor S,Champion D J,Chaudhary A,Hotan A W,Khoo J,Kocz J,Osłowski S,Ravi V,Reynolds J E,Sarkissian J,van Straten W and Yardley D R B 2013 MNRAS,429,2161

    [13]

    Lee K J,Bassa C G,Janssen G H,KaruppusamyR,Kramer M,Liu K,Perrodin D,Smits R,Stappers B W,van Haasteren R and Lentati L 2014 MNRAS,441,2831

    [14]

    Petit G,Tavella P 1996 A&A, 308, 290

    [15]

    Coles W,Hobbs G,Champion D J,Manchester R N,Verbiest J P W 2011 MNRAS,418,561

    [16]

    Caballero R N,Lee K J,Lentati L,Desvignes G,Champion D J,Verbiest J P W,Janssen G H,Stappers B W,Kramer M,Lazarus P,Possenti A,Tiburzi C,Perrodin D,Osłowski S,Babak S,Bassa C G,Brem P,Burgay M,Cognard I,Gair J R,Graikou E,Guillemot L,Hessels J W T,Karuppusamy R,Lassus A,Liu K,McKee J,Mingarelli C M F,Petiteau A,Purver M B,Rosado P A,Sanidas S,Sesana A,Shaifullah G,Smits R,Taylor S R,Theureau G,van Haasteren R, Vecchio A 2016 MNRAS,457,4421

    [17]

    Hobbs G,Coles W,Manchester R N,Keith M J,Shannon R M,Chen D,Bailes M,Bhat N D R,Burke-Spolaor S,Champion D,Chaudhary A,Hotan A,Khoo J,Kocz J,Levin Y,Oslowski S,Preisig B,Ravi V,Reynolds J E,Sarkissian J,van Straten W,Verbiest J P W,Yardley D,You X P 2012 MNRAS,427,2780

    [18]

    Matsakis D N,Taylor J H,Eubanks T M 1997 Astron. Astrophys.,326,924

    [19]

    Yang T G, Gao Y P, Tong M L,Li B,Zhao C S,Zhu X Z 2024 Journal of Time and Frequency,47(3): 192-201(in Chinese) [杨廷高,高玉平,童明雷,李变,赵成仕,朱幸芝 2024 时间频率学报, 47(3): 192]

    [20]

    Lentati L,Shannon R M,Coles W A,Verbiest J P W,van Haasteren R,Ellis J A,Caballero R N,Manchester R N,Arzoumanian Z,Babak S,Bassa C G,Bhat N D R,Brem P,Burgay M,Burke-Spolaor S,Champion D,Chatterjee S,Cognard I,Cordes J M,Dai S,Demorest P,Desvignes G,Dolch T,Ferdman R D,Fonseca E,Gair J R,Gonzalez M E,Graikou E,Guillemot L,Hessels J W T,Hobbs G,Janssen G H,Jones G,Karuppusamy R,Keith M,Kerr M,Kramer M,Lam M T,Lasky P D,Lassus A,Lazarus P,Lazio T J W,Lee K J,Levin L,Liu K,Lynch R S,Madison D R,McKee J,McLaughlin M,McWilliams S T,Mingarelli C M F,Nice D J,Osłowski S,Pennucci T T,Perera B B P,Perrodin D,Petiteau A,Possenti A,Ransom S M,Reardon D,Rosado P A,Sanidas S A,Sesana A,Shaifullah G,Siemens X,Smits R,Stairs I,Stappers B,Stinebring D R,Stovall K,Swiggum J,Taylor S R,Theureau G,Tiburzi C,Toomey L,Vallisneri M,van Straten W,Vecchio A,Wang J B,Wang Y,You X P,ZhuW W, Zhu X J 2016 MNRAS 458, 2161

    [21]

    Lentati L,Taylor S R,Mingarelli C M F,Sesana A,Sanidas S A,Vecchio A,Caballero R N,Lee K J,van Haasteren R,Babak S,Bassa C G,Brem P,Burgay M,Champion D J,Cognard I,Desvignes G,Gair J R,Guillemot L,Hessels J W T,Janssen G H,Karuppusamy R,Kramer M,Lassus A,Lazarus P,Liu K,Osłowski S,Perrodin D,Petiteau A,Possenti A,Purver M B,Rosado P A,Smits R,Stappers B,Theureau G,Tiburzi C, Verbiest J P W 2015 MNRAS 453, 2576

  • [1] 王正品, 徐天悦, 方海燕, 张泽葳, 何熊文, 陈朝基, 钟兆丰. 临近空间X射线脉冲星信号传输特性分析. 物理学报, doi: 10.7498/aps.74.20250183
    [2] 韩孟纳, 童明雷. 基于脉冲星观测的原子时波动检验研究. 物理学报, doi: 10.7498/aps.72.20222208
    [3] 周庆勇, 魏子卿, 闫林丽, 孙鹏飞, 刘思伟, 冯来平, 姜坤, 王奕迪, 朱永兴, 刘晓刚, 明锋, 张奋, 贺珍妮. 面向综合定位导航授时系统的天地基脉冲星时间研究. 物理学报, doi: 10.7498/aps.70.20210288
    [4] 康志伟, 刘拓, 刘劲, 马辛, 陈晓. 基于自归一化神经网络的脉冲星候选体选择. 物理学报, doi: 10.7498/aps.69.20191582
    [5] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, doi: 10.7498/aps.67.20172100
    [6] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法. 物理学报, doi: 10.7498/aps.65.119701
    [7] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法. 物理学报, doi: 10.7498/aps.64.219702
    [8] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, doi: 10.7498/aps.62.139701
    [9] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟. 物理学报, doi: 10.7498/aps.62.109701
    [10] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测. 物理学报, doi: 10.7498/aps.62.139702
    [11] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, doi: 10.7498/aps.61.209702
    [12] 谢强, 许录平, 张华, 罗楠. X射线脉冲星累积轮廓建模及信号辨识. 物理学报, doi: 10.7498/aps.61.119701
    [13] 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法. 物理学报, doi: 10.7498/aps.61.069701
    [14] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测. 物理学报, doi: 10.7498/aps.60.049701
    [15] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, doi: 10.7498/aps.60.029701
    [16] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, doi: 10.7498/aps.60.119701
    [17] 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法. 物理学报, doi: 10.7498/aps.60.039701
    [18] 李建勋, 柯熙政. 基于循环平稳信号相干统计量的脉冲星周期估计新方法. 物理学报, doi: 10.7498/aps.59.8304
    [19] 谢振华, 许录平, 倪广仁. 基于双谱的脉冲星累积脉冲轮廓时间延迟测量. 物理学报, doi: 10.7498/aps.57.6683
    [20] 仲崇霞, 杨廷高. 小波域中的维纳滤波在综合脉冲星时算法中的应用. 物理学报, doi: 10.7498/aps.56.6157
计量
  • 文章访问数:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回