搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气力提升系统气液两相流数值模拟分析

左娟莉 杨泓 魏炳乾 侯精明 张凯

引用本文:
Citation:

气力提升系统气液两相流数值模拟分析

左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯

Numerical simulation of gas-liquid two-phase flow in gas lift system

Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai
PDF
HTML
导出引用
  • 污水处理、油田采油、液态金属冷却反应堆和磁流体动力转换器等领域采用气力提升系统有其显著优势. 由于不同液体介质与气体介质密度对气力提升系统性能影响较大, 因此本文基于Fluent仿真软件, 采用欧拉模型、k-ω剪切应力输运湍流模型数值模拟了氮气-水、氮气-煤油、氮气-水银及空气-水、氩气-水、氮气-水下气力提升系统内气液两相流动行为, 分析了系统稳定时提升立管内气相体积分数、提升液体流量、提升效率、提升管出口处液体径向速度的变化规律. 研究结果表明: 1)氮气-水、氮气-煤油、氮气-水银系统中, 提升管内液体介质密度越大, 提升管内气相体积分数越小、提升液体流量越大、提升效率越高; 2)空气-水、氩气-水、氮气-水系统中, 提升管内气体介质密度越大, 提升管内气相体积分数越小、提升液体流量越大、提升效率峰值越小; 3)提升管出口处提升液体径向速度随气体充入量的不断增加而整体波动升高, 最终管轴中心附近液体速度较大, 管壁附近液体速度较小. 本文研究成果为污水处理、气举采油、液态重金属冷却核反应堆和磁流体动力转换器等应用领域的气力提升技术的优化提供科学的理论基础.
    The gas-lift system has a lot of significant advantages in sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters. The densities of different liquid media and gas media have great influences on the performance of gas lift system. Therefore, based on Fluent simulation software, using Euler model and k-ω SST (shear stress transport) turbulence model, the gas-liquid two-phase flow behaviors in nitrogen-water, nitrogen-kerosene, nitrogen-mercury and air-water, argon-water, nitrogen-water of gas lift system are studied. The rules of gas volume fraction and liquid flow rate at lifting pipe, liquid radial velocity at lifting pipe outlet, promoting efficiency are analyzed. The results are shown as follows. 1) In the nitrogen-water, nitrogen-kerosene and nitrogen-mercury system, the higher the density of liquid medium, the smaller the gas volume fraction in the lifting pipe is; the greater the flow rate of lifting liquid, the higher the promoting efficiency is. 2) In the air-water, argon-water and nitrogen-water systems, the higher the density of gas medium, the smaller the gas volume fraction in the lifting pipe is; the larger the flow rate of lifting liquid, the smaller the peak value of promoting efficiency is. 3) With the increase of gas flow rate, the liquid radial velocity at the lifting pipe outlet increases with overall fluctuation rising. Finally, the liquid velocity near the center of pipe axis is large, near the pipe wall is small. These research results provide the scientific theoretical basis for optimizing the gas lifting technology in applications such as sewage treatment, deep well oil recovery, liquid metal cooled reactor and magnetohydrodynamic power converters.
      通信作者: 魏炳乾, weibingqian@xaut.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11605136)
      Corresponding author: Wei Bing-Qian, weibingqian@xaut.edu.cn
    [1]

    Tang C L, Hu D, Pei J H, Yang L 2010 Chin. J. Mech. Eng. 23 122Google Scholar

    [2]

    Cazarez O, Montoya D, Vital A G, Bannwart A C 2010 Int. J. Multiphase Flow 36 439Google Scholar

    [3]

    胡东, 赵哲睿, 唐川林, 张凤华 2013 矿冶工程 33 9Google Scholar

    Hu D, Zhao Z R, Tang C L, Zhang F H 2013 Min. Metal. Eng. 33 9Google Scholar

    [4]

    何晓娟 2013 硕士学位论文 (广州: 华南理工大学)

    Gu X J 2013 M. S. Thesis (Guangzhou: South China University of Technology) (in Chinese)

    [5]

    廖振方, 陈德淑, 邓晓刚, 李军, 杨昌林, 王红霞, 赵建新 2003 重庆大学学报 26 1Google Scholar

    Liao Z F, Chen D S, Deng X G, Li J, Yang C L, Wang H X, Zhao J X 2003 J. Chongqing Univ. 26 1Google Scholar

    [6]

    Liang N K, Peng H K 2005 Ocean Eng. 32 731Google Scholar

    [7]

    刘三威 2004 博士学位论文 (成都: 西南石油学院)

    Liu S W 2004 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)

    [8]

    Giuliani C M, Camponogara E 2015 Comput. Chem. Eng. 75 60Google Scholar

    [9]

    Ma W, Bubelis E, Karbojian A, Sehgal B R, Coddington P 2006 Nucl. Eng. Des. 236 1422Google Scholar

    [10]

    Satyamurthy P, Dixit N S, Thiyagarajan T K, Venkatramani N, Quraishi A M, Mushtaq A 1998 Int. J. Multiphase Flow 24 721Google Scholar

    [11]

    Nicklin D J 1963 Trans. Instn. Chem. Engrs 41 29

    [12]

    Futer R E 1965 US Patent 3 180 688

    [13]

    Kato H, Miyazawa T, Timaya S, Iwasaki T 1975 Bull. JSME 18 286Google Scholar

    [14]

    Kouremenos D A, Staicos J 1985 Int. J. Heat Fluid Flow 6 217Google Scholar

    [15]

    Kajishima T, Saito T 1996 JSME Int. J., Ser. B 39 525Google Scholar

    [16]

    Khalil M F, Elshorbagy K A, Kassab S Z, Fahmy R I 1999 Int. J. Heat Fluid Flow 20 598Google Scholar

    [17]

    Furukawa T, Fukano T 2001 Int. J. Multiphase Flow 27 1109Google Scholar

    [18]

    Pougatch K, Salcudean M 2007 American Society of Mechanical Engineers San Diego, California, USA, June 10−15, 2007 p685

    [19]

    Moisidis C T, Kastrinakis E G 2010 J. Hydraul. Res. 48 680Google Scholar

    [20]

    高嵩, 李巍, 尤云祥, 胡天群 2012 物理学报 61 104701Google Scholar

    Gao S, Li W, You Y X, Hu T Q 2012 Acta Phys. Sin. 61 104701Google Scholar

    [21]

    李洪伟, 周云龙, 王世勇, 孙斌 2013 物理学报 62 140505Google Scholar

    Li H W, Zhou Y L, Wang S Y, Sun B 2013 Acta Phys. Sin. 62 140505Google Scholar

    [22]

    胡东, 唐川林, 张凤华, 杨林 2012 水动力学研究与进展A辑 27 456Google Scholar

    Hu D, Tang C L, Zhang F H, Yang L 2012 Chinese J. Hydrodyn. 27 456Google Scholar

    [23]

    Tighzert H, Brahimi M, Kechroud N, Benabbas F 2013 J. Pet. Sci. Eng. 110 155Google Scholar

    [24]

    Fan W, Chen J, Pan Y, Huang H, Chen C T A., Chen Y 2013 Ocean Eng. 59 47Google Scholar

    [25]

    Wahba E M, Gadalla M A, Abueidda D, Dalaq A, Hafiz H, Elawadi K, Issa R 2014 J. Fluids Eng. 136 111301Google Scholar

    [26]

    Zuo J, Tian W, Chen R, Qiu S, Su G 2013 Nucl. Eng. Des. 263 1Google Scholar

    [27]

    Zuo J, Tian W, Qiu S, Su G 2018 Prog. Nucl. Energy 106 181Google Scholar

    [28]

    左娟莉, 李逢超, 郭鹏程, 孙帅辉, 罗兴锜 2017 农业工程学报 33 85Google Scholar

    Zuo J L, Li P C, Guo P C, Sun S H, Luo X Q 2017 Trans. Chin. Soc. Agricultural Eng. 33 85Google Scholar

    [29]

    江帆, 徐勇程, 黄鹏 Fluent高级应用与实例分析 (第2版) (北京: 清华出版社) 第158− 162页

    Jiang F, Xu Y C, Huang P 2018 Advanced Application and Case Study of Fluent (2nd Ed.) (Beijing: Tsinghua University Press) pp158−162 (in Chinese)

    [30]

    刘博 2016 硕士学位论文 (西安: 西安交通大学)

    Liu B 2016 M. S. Thesis (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Krepper E, Morel C, Niceno B, Ruyer P 2011 Multiphase Sci. Technol. 23 129Google Scholar

    [32]

    Oueslati A, Megriche A 2017 Energy Procedia 119 693Google Scholar

  • 图 1  气力提升系统模型图 (a) 气力提升装置示意简图; (b) 模型及网格划分

    Fig. 1.  Model diagram of gas lift system: (a) Schematic diagram of gas lift system; (b) model and grid generation.

    图 2  实验装置图[32]

    Fig. 2.  Experimental apparatus system[32].

    图 3  提升管内气相体积分数随充气量的变化 (a) 不同液体介质; (b) 不同气体介质

    Fig. 3.  Change of gas volume fraction with gas volume flow rate in lifting pipe: (a) Different liquid mediums; (b) different gas mediums.

    图 4  提升液体流量随时间的变化 (a) 不同液体介质; (b) 不同气体介质

    Fig. 4.  Change of liquid volume flow rate with time: (a) Different liquid mediums; (b) different gas mediums.

    图 5  液体提升过程相位图

    Fig. 5.  Phase diagram of liquid lifting process.

    图 6  提升液体流量随充气量的变化 (a) 不同液体介质; (b) 不同气体介质

    Fig. 6.  Change of liquid volume flow rate with gas volume flow rate: (a) Different liquid mediums; (b) different gas mediums.

    图 7  提升管总压降随充气量的变化 (a) 不同液体介质; (b) 不同气体介质

    Fig. 7.  Change of total pressure drop with gas volume flow rate in lifting pipe: (a) Different liquid mediums; (b) different gas mediums.

    图 8  不同充气量下提升管出口处液体速度径向分布 (a) 不同液体介质; (b) 不同气体介质

    Fig. 8.  Liquid radial velocity at lifting pipe outlet under different gas volume flow rates: (a) Different liquid mediums; (b) different gas mediums.

    图 9  提升液体效率随充气量的人变化 (a) 不同液体介质; (b) 不同气体介质

    Fig. 9.  Change of lifting efficiency with gas mass flow rate: (a) Different liquid mediums; (b) different gas mediums.

    表 1  实验结果与模拟结果的对比

    Table 1.  Comparison of experimental and simulation results.

    充气量QG/m3·h–1提升液体流量
    实验值$ Q′_{\rm L} $/m3·h–1
    提升液体流量
    模拟值QL/m3·h–1
    误差/%
    0.81630.40310.459714.0
    1.63270.57000.811742.4
    2.44901.23361.18174.2
    3.26531.36761.36650.1
    4.0816 1.3709 1.3786 0.6
    4.8980 1.3735 1.3848 0.8
    5.7143 1.3735 1.3705 0.2
    下载: 导出CSV

    表 2  物性参数表

    Table 2.  Physical parameters table.

    变量密度/kg·m–3黏度/Pa·s表面张力/N·m–1
    氮气1.13800.00001663
    空气1.22500.000017894
    氩气1.62280.000021250
    水银135290.0015230.4840
    998.20.0010030.0728
    煤油7800.00240.0260
    下载: 导出CSV
  • [1]

    Tang C L, Hu D, Pei J H, Yang L 2010 Chin. J. Mech. Eng. 23 122Google Scholar

    [2]

    Cazarez O, Montoya D, Vital A G, Bannwart A C 2010 Int. J. Multiphase Flow 36 439Google Scholar

    [3]

    胡东, 赵哲睿, 唐川林, 张凤华 2013 矿冶工程 33 9Google Scholar

    Hu D, Zhao Z R, Tang C L, Zhang F H 2013 Min. Metal. Eng. 33 9Google Scholar

    [4]

    何晓娟 2013 硕士学位论文 (广州: 华南理工大学)

    Gu X J 2013 M. S. Thesis (Guangzhou: South China University of Technology) (in Chinese)

    [5]

    廖振方, 陈德淑, 邓晓刚, 李军, 杨昌林, 王红霞, 赵建新 2003 重庆大学学报 26 1Google Scholar

    Liao Z F, Chen D S, Deng X G, Li J, Yang C L, Wang H X, Zhao J X 2003 J. Chongqing Univ. 26 1Google Scholar

    [6]

    Liang N K, Peng H K 2005 Ocean Eng. 32 731Google Scholar

    [7]

    刘三威 2004 博士学位论文 (成都: 西南石油学院)

    Liu S W 2004 Ph. D. Dissertation (Chengdu: Southwest Petroleum University) (in Chinese)

    [8]

    Giuliani C M, Camponogara E 2015 Comput. Chem. Eng. 75 60Google Scholar

    [9]

    Ma W, Bubelis E, Karbojian A, Sehgal B R, Coddington P 2006 Nucl. Eng. Des. 236 1422Google Scholar

    [10]

    Satyamurthy P, Dixit N S, Thiyagarajan T K, Venkatramani N, Quraishi A M, Mushtaq A 1998 Int. J. Multiphase Flow 24 721Google Scholar

    [11]

    Nicklin D J 1963 Trans. Instn. Chem. Engrs 41 29

    [12]

    Futer R E 1965 US Patent 3 180 688

    [13]

    Kato H, Miyazawa T, Timaya S, Iwasaki T 1975 Bull. JSME 18 286Google Scholar

    [14]

    Kouremenos D A, Staicos J 1985 Int. J. Heat Fluid Flow 6 217Google Scholar

    [15]

    Kajishima T, Saito T 1996 JSME Int. J., Ser. B 39 525Google Scholar

    [16]

    Khalil M F, Elshorbagy K A, Kassab S Z, Fahmy R I 1999 Int. J. Heat Fluid Flow 20 598Google Scholar

    [17]

    Furukawa T, Fukano T 2001 Int. J. Multiphase Flow 27 1109Google Scholar

    [18]

    Pougatch K, Salcudean M 2007 American Society of Mechanical Engineers San Diego, California, USA, June 10−15, 2007 p685

    [19]

    Moisidis C T, Kastrinakis E G 2010 J. Hydraul. Res. 48 680Google Scholar

    [20]

    高嵩, 李巍, 尤云祥, 胡天群 2012 物理学报 61 104701Google Scholar

    Gao S, Li W, You Y X, Hu T Q 2012 Acta Phys. Sin. 61 104701Google Scholar

    [21]

    李洪伟, 周云龙, 王世勇, 孙斌 2013 物理学报 62 140505Google Scholar

    Li H W, Zhou Y L, Wang S Y, Sun B 2013 Acta Phys. Sin. 62 140505Google Scholar

    [22]

    胡东, 唐川林, 张凤华, 杨林 2012 水动力学研究与进展A辑 27 456Google Scholar

    Hu D, Tang C L, Zhang F H, Yang L 2012 Chinese J. Hydrodyn. 27 456Google Scholar

    [23]

    Tighzert H, Brahimi M, Kechroud N, Benabbas F 2013 J. Pet. Sci. Eng. 110 155Google Scholar

    [24]

    Fan W, Chen J, Pan Y, Huang H, Chen C T A., Chen Y 2013 Ocean Eng. 59 47Google Scholar

    [25]

    Wahba E M, Gadalla M A, Abueidda D, Dalaq A, Hafiz H, Elawadi K, Issa R 2014 J. Fluids Eng. 136 111301Google Scholar

    [26]

    Zuo J, Tian W, Chen R, Qiu S, Su G 2013 Nucl. Eng. Des. 263 1Google Scholar

    [27]

    Zuo J, Tian W, Qiu S, Su G 2018 Prog. Nucl. Energy 106 181Google Scholar

    [28]

    左娟莉, 李逢超, 郭鹏程, 孙帅辉, 罗兴锜 2017 农业工程学报 33 85Google Scholar

    Zuo J L, Li P C, Guo P C, Sun S H, Luo X Q 2017 Trans. Chin. Soc. Agricultural Eng. 33 85Google Scholar

    [29]

    江帆, 徐勇程, 黄鹏 Fluent高级应用与实例分析 (第2版) (北京: 清华出版社) 第158− 162页

    Jiang F, Xu Y C, Huang P 2018 Advanced Application and Case Study of Fluent (2nd Ed.) (Beijing: Tsinghua University Press) pp158−162 (in Chinese)

    [30]

    刘博 2016 硕士学位论文 (西安: 西安交通大学)

    Liu B 2016 M. S. Thesis (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Krepper E, Morel C, Niceno B, Ruyer P 2011 Multiphase Sci. Technol. 23 129Google Scholar

    [32]

    Oueslati A, Megriche A 2017 Energy Procedia 119 693Google Scholar

  • [1] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图. 物理学报, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [2] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [3] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [4] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型. 物理学报, 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [5] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂胜. 一种基于混沌系统部分序列参数辨识的混沌保密通信方法. 物理学报, 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [6] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 耿少飞, 唐德礼, 邱孝明, 聂军伟, 于毅军. 霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响. 物理学报, 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [10] 赵跃智, 廖桂华, 陈文娟, 曹钦存. TeO2-Nb2O5-BaCl2 玻璃的结构及光学性能研究. 物理学报, 2012, 61(23): 237802. doi: 10.7498/aps.61.237802
    [11] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] 蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷. 选择性激光烧结成型件密度的支持向量回归预测. 物理学报, 2009, 58(13): 8-S14. doi: 10.7498/aps.58.8
    [14] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [15] 王 杰, 徐友龙, 陈 曦, 杜显锋, 李喜飞. 电化学法制备高密度导电聚吡咯的性能研究. 物理学报, 2007, 56(7): 4256-4261. doi: 10.7498/aps.56.4256
    [16] 史秀梅, 王 强, 牛小娟, 李晨曦, 王凤平, 陆坤权. Li2O-2B2O3熔体的物性研究. 物理学报, 2006, 55(1): 76-79. doi: 10.7498/aps.55.76
    [17] 唐荣荣. 超短超强脉冲激光产生的电离通道的存活性态分析. 物理学报, 2006, 55(2): 494-498. doi: 10.7498/aps.55.494
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  9194
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-15
  • 修回日期:  2019-12-24
  • 刊出日期:  2020-03-20

/

返回文章
返回