搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用双光子电离探测技术研究奇宇称的Sm原子光谱

李鸣 戴长建 谢军

引用本文:
Citation:

用双光子电离探测技术研究奇宇称的Sm原子光谱

李鸣, 戴长建, 谢军

Study of odd-parity states of Sm atom with two-photon ionization detection method

Li Ming, Dai Chang-Jian, Xie Jun
PDF
导出引用
  • 采用两台激光器对Sm原子奇宇称激发态的光谱及其特性进行了系统研究.利用一台波长在585 nm到663 nm之间调谐的染料激光器,将Sm原子从某个4f66s27FJ(J=0—6)态激发到具有奇宇称的4f66s6p或4f55d6s2激发态.然后,采用波长固定在532 nm的强激光束,对处于上述奇宇称激发态的Sm原子进行双光子电离,以实现探测其光谱信息
    In this paper, spectra of odd-parity states of Sm atom are systematically studied with two-photon ionization detection method. The Sm atom is excited by a pulsed dye laser and scanned from 585 nm to 663 nm, so that it is populated in different odd-parity states with 4f66s6p and 4f55d6s2 electronic configurations from one of the 4f66s27FJ(J=0—6) states. Then the Sm atom is further excited and ionized by a two-photon transition with a second laser which has a much higher intensity and a fixed wavelength. The Sm ions emerging from the above processes were detected by an MCP detector. Some of the transitions are reported for the first time together with their resonance wavelengths and relative strengths, while the rest of them which have been reported previously in the litcrature are confirmed by the present work with supplementary information on their relative strengths.
    • 基金项目: 国家自然科学基金(批准号:10574098,10674102)、天津市自然科学基金(批准号:05YFJMJC05200)资助的课题.
    [1]

    [1]Li S B, Dai C J, Sun W, Xue P 2001 J. Phys. B 34 2123

    [2]

    [2]Huang W, Xu X Y, Xu C B, Xue P, Xue M, Chen D Y 1996 Phys. Rev. A 54 5423

    [3]

    [3]Quan W, Liu H P, Shen L, Zhan M S 2007 Chin. Phys. 16 3642

    [4]

    [4]Camus P, Gallagher T F, Lecomte J M, Pillet P, Pruvost L 1989 Phys. Rev. Lett. 62 2365

    [5]

    [5]Fedoseev V N, Mishin V I, Vedeneev D S, Zuzikov A D 1991 J. Phys. B 24 1575

    [6]

    [6]Ding X B, Dong C Z, Fumihiro K, Takato K, Stephan F 2008 Chin. Phys. B 17 0592

    [7]

    [7]Vidolova E P, Krustev T B, Angelov D A, Mincheva S 1997 J. Phys. B 30 667

    [8]

    [8]Zhang L J, Feng Z G, Li A L, Zhao J M, Li G Y, Jia S T 2009 Chin. Phys. B 18 1838

    [9]

    [9]Liang L, Wang Y C, Chao Z, Qiang W C 2007 J. Phys. B 75 127

    [10]

    ]Lange V, Aymar M, Eichmann U, Sandner W 1991 J. Phys. B 24 91

    [11]

    ]Raheel A, Yaseen M, Nadeem A, Bhatti S A, Baig M A 1999 J. Phys. B 32 953

    [12]

    ]Raheel A, Nadeem A, Yaseen M, Aslam M, Bhatti S A, Baig M A 1999 J. Phys. B 32 4361

    [13]

    ]Yi J, Park H, Lee J 1998 J. Kore. Phys. Soci. 5 916

    [14]

    ]Hu S F, Zhang S, Mei S M, Qiu J Z, Chen X 1990 J. Quant. Spectrosc. Radiat. Transfer 1 75

    [15]

    ]Hu S F, Mei S M, Zhang S, Chen X, Xu Y F 1990 Chin. Phys. Lett. 6 64

    [16]

    ]Hu S F, Qiu J Z, Wang G, Liang Y, Chen X 1989 Acta. Phys. Sin. 38 487 (in Chinese) [胡素芬、 邱济真、 张森、 王刚、 梁宜、 陈星 1989 物理学报 38 487]

    [17]

    ]Jia L, Jing C Y, Zhou Z Y, Liu F C 1992 J. Opt. Soc. Am. B 10 1317

    [18]

    ]Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Phys. B 33 3123

    [19]

    ]Nakhate S G, Razvi M A N, Connerade J P, Ahmad S A 2000 J. Phys. B 33 5191

    [20]

    ]Pulhani A K, Shah M L, Dev V, Suri B M 2004 J. Opt. Soc. Am. B 22 1117

    [21]

    ]Park H, Kim H, Yi J, Han J, Rhee Y, Lee J 1998 J. Kore. Phys. Soci. 33 288

    [22]

    ]Gononai A I, Plekan O I 2003 J. Phys. B 36 4155

    [23]

    ]Guan F, Dai C J, Zhao H Y 2008 Chin. Phys. B 17 3655

    [24]

    ]Martin W C, Zalubas R, Hagan L 1978 Atomic Energy Levels-The Rare-Earth Elements, NSRDS-NBS60 (U.S. GPO, Washington, D.C.) p162

    [25]

    ]Zhao H Y, Dai C J, Guan F 2009 J. Phys. B 42 065001

    [26]

    ]Zhao H Y, Dai C J, Cuan F 2009 Chin. Phys. B 58 0215

  • [1]

    [1]Li S B, Dai C J, Sun W, Xue P 2001 J. Phys. B 34 2123

    [2]

    [2]Huang W, Xu X Y, Xu C B, Xue P, Xue M, Chen D Y 1996 Phys. Rev. A 54 5423

    [3]

    [3]Quan W, Liu H P, Shen L, Zhan M S 2007 Chin. Phys. 16 3642

    [4]

    [4]Camus P, Gallagher T F, Lecomte J M, Pillet P, Pruvost L 1989 Phys. Rev. Lett. 62 2365

    [5]

    [5]Fedoseev V N, Mishin V I, Vedeneev D S, Zuzikov A D 1991 J. Phys. B 24 1575

    [6]

    [6]Ding X B, Dong C Z, Fumihiro K, Takato K, Stephan F 2008 Chin. Phys. B 17 0592

    [7]

    [7]Vidolova E P, Krustev T B, Angelov D A, Mincheva S 1997 J. Phys. B 30 667

    [8]

    [8]Zhang L J, Feng Z G, Li A L, Zhao J M, Li G Y, Jia S T 2009 Chin. Phys. B 18 1838

    [9]

    [9]Liang L, Wang Y C, Chao Z, Qiang W C 2007 J. Phys. B 75 127

    [10]

    ]Lange V, Aymar M, Eichmann U, Sandner W 1991 J. Phys. B 24 91

    [11]

    ]Raheel A, Yaseen M, Nadeem A, Bhatti S A, Baig M A 1999 J. Phys. B 32 953

    [12]

    ]Raheel A, Nadeem A, Yaseen M, Aslam M, Bhatti S A, Baig M A 1999 J. Phys. B 32 4361

    [13]

    ]Yi J, Park H, Lee J 1998 J. Kore. Phys. Soci. 5 916

    [14]

    ]Hu S F, Zhang S, Mei S M, Qiu J Z, Chen X 1990 J. Quant. Spectrosc. Radiat. Transfer 1 75

    [15]

    ]Hu S F, Mei S M, Zhang S, Chen X, Xu Y F 1990 Chin. Phys. Lett. 6 64

    [16]

    ]Hu S F, Qiu J Z, Wang G, Liang Y, Chen X 1989 Acta. Phys. Sin. 38 487 (in Chinese) [胡素芬、 邱济真、 张森、 王刚、 梁宜、 陈星 1989 物理学报 38 487]

    [17]

    ]Jia L, Jing C Y, Zhou Z Y, Liu F C 1992 J. Opt. Soc. Am. B 10 1317

    [18]

    ]Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Phys. B 33 3123

    [19]

    ]Nakhate S G, Razvi M A N, Connerade J P, Ahmad S A 2000 J. Phys. B 33 5191

    [20]

    ]Pulhani A K, Shah M L, Dev V, Suri B M 2004 J. Opt. Soc. Am. B 22 1117

    [21]

    ]Park H, Kim H, Yi J, Han J, Rhee Y, Lee J 1998 J. Kore. Phys. Soci. 33 288

    [22]

    ]Gononai A I, Plekan O I 2003 J. Phys. B 36 4155

    [23]

    ]Guan F, Dai C J, Zhao H Y 2008 Chin. Phys. B 17 3655

    [24]

    ]Martin W C, Zalubas R, Hagan L 1978 Atomic Energy Levels-The Rare-Earth Elements, NSRDS-NBS60 (U.S. GPO, Washington, D.C.) p162

    [25]

    ]Zhao H Y, Dai C J, Guan F 2009 J. Phys. B 42 065001

    [26]

    ]Zhao H Y, Dai C J, Cuan F 2009 Chin. Phys. B 58 0215

  • [1] 王海云, 祁辉荣, 刘凌, 原之洋, 张余炼, 温志文, 张建, 陈元柏, 欧阳群. 微结构气体探测器中紫外激光束的信号和指向精度实验研究. 物理学报, 2019, 68(2): 022901. doi: 10.7498/aps.68.20181613
    [2] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [3] 王志辉, 田亚莉, 李刚, 张天才. 用于铯原子内态操控的双光子拉曼激光的产生及应用. 物理学报, 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [4] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控. 物理学报, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [5] 杨騄, 戴长建, 赵艳红. 用光电离技术探测钐原子的奇宇称束缚激发态的光谱. 物理学报, 2013, 62(5): 053201. doi: 10.7498/aps.62.053201
    [6] 赵艳红, 戴长建, 野仕伟. Sm原子的偶宇称高激发态的光谱研究. 物理学报, 2012, 61(3): 033201. doi: 10.7498/aps.61.033201
    [7] 肖颖, 戴长建, 赵洪英, 秦文杰. 铕原子奇宇称高激发态共振电离光谱的研究. 物理学报, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [8] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [9] 秦文杰, 戴长建, 赵洪英, 肖颖. 利用自电离探测技术研究Sm原子Rydberg态光谱. 物理学报, 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [10] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [11] 刘小娟, 周并举, 方卯发, 周清平. 双光子过程中任意初态原子的信息熵压缩. 物理学报, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
    [12] 张立敏, 陈 军, 徐海峰, 戴静华, 刘世林, 陈从香, 马兴孝. 243—263nm S原子Rydberg态的(2+1)共振增强多光子电离. 物理学报, 1999, 48(7): 1204-1209. doi: 10.7498/aps.48.1204
    [13] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
    [14] 祁永昌. 电子-狄喇克双子束缚态的宇称性质及其斯塔克效应. 物理学报, 1996, 45(3): 373-379. doi: 10.7498/aps.45.373
    [15] 张森, 梅式民, 邱济真, 徐云飞. SrI 4dnp和4dnf奇宇称J=1系列自电离态光谱. 物理学报, 1990, 39(10): 1536-1541. doi: 10.7498/aps.39.1536
    [16] 吴璧如, 徐云飞, 郑幼凤, 胡永炎, 陆杰. 镱的奇宇称自电离谱. 物理学报, 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [17] 巫英坚, 李家明. 原子双光子电离截面的理论计算. 物理学报, 1985, 34(7): 933-940. doi: 10.7498/aps.34.933
    [18] 杨桂林, 徐游, 初大平, 薛登平, 翟宏如. 奇宇称晶场对Ce3+离子能级劈裂的影响. 物理学报, 1983, 32(2): 259-266. doi: 10.7498/aps.32.259
    [19] 李清润. O17和F17低能反宇称态的相干结构. 物理学报, 1965, 21(7): 1370-1380. doi: 10.7498/aps.21.1370
    [20] 张宗烨, 余友文, 朱熙泉. O16偶宇称态的结构(Ⅰ). 物理学报, 1965, 21(5): 897-906. doi: 10.7498/aps.21.897
计量
  • 文章访问数:  4697
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-29
  • 修回日期:  2009-09-04
  • 刊出日期:  2010-05-15

用双光子电离探测技术研究奇宇称的Sm原子光谱

  • 1. 天津理工大学主校区理学院,天津 300384
    基金项目: 国家自然科学基金(批准号:10574098,10674102)、天津市自然科学基金(批准号:05YFJMJC05200)资助的课题.

摘要: 采用两台激光器对Sm原子奇宇称激发态的光谱及其特性进行了系统研究.利用一台波长在585 nm到663 nm之间调谐的染料激光器,将Sm原子从某个4f66s27FJ(J=0—6)态激发到具有奇宇称的4f66s6p或4f55d6s2激发态.然后,采用波长固定在532 nm的强激光束,对处于上述奇宇称激发态的Sm原子进行双光子电离,以实现探测其光谱信息

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回