搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm原子的偶宇称高激发态的光谱研究

赵艳红 戴长建 野仕伟

引用本文:
Citation:

Sm原子的偶宇称高激发态的光谱研究

赵艳红, 戴长建, 野仕伟

Studyof spectra of even-parity highly excited states of Sm atom

Zhao Yan-Hong, Dai Chang-Jian, Ye Shi-Wei
PDF
导出引用
  • 采用双色三步激发和光电离过程,对Sm原子的偶宇称高激发态的光谱进行了研究.先采用两条激发路线分别将Sm原子两步共振激发至待测的高激发态,然后利用光电离技术对其进行探测.分别将第一束激光的波长固定在627.50nm和624.41nm上,以便将Sm原子从亚稳态共振激发到由4f66s6p电子组态所构成的两个原子状态上.第二束激光在440700nm的波段范围内扫描,不仅使Sm原子在3004038065cm-1能域内的偶宇称高激发态上布居,将其进一步光电离,测量了其光谱.通过光谱定标和选择定则等分析手段,本工作不仅精确获得了136个态的能级位置,而且也唯一确定了其总角动量,并且给出了相关跃迁的相对谱线强度.
    Spectra of even-parity highly excited states of the Sm atom have been systematically studied with two color three-step excitation and photoionization detection method. With two different excitation paths, the atom is resonantly excited to given bound states where it is detected by photoionization. The wavelength of the first laser is fixed at 627.50 nm or 624.41 nm so that the Sm atom can be excited to the two different intermediate states with the 4f66s6p configuration. Then the wavelength of the second laser is scanned from 440-700 nm to further excite the atom, so that the highly excited states in the 30040-38065 cm-1energy region can be populated. Based on precise calibration of wavelength and the selection rules, the level energies of 136 even-parity states and their relative line intensities are determined with a unique assignment of the J momentum. Except for the level energies of 71 even-parity states are confirmed by the present work, all information mention above has not been reported previously.
    • 基金项目: 国家自然科学基金(批准号: 10574098, 10674102)和天津市自然科学基金(批准号: 05YFJMJC05200)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of China(Grant Nos. 10574098, 10674102) and the National Science Foundation of Tianjin, China(Grant No. 05YFJMJC05200).
    [1]

    Boker J, Freeman R R, CookeWE 1982 Phys. Rev. Lett. 48 1242

    [2]

    Li J M 1983 Acta Phys. Sin. 32 84(in Chinese)[李家明 1983 物理学报 32 84]

    [3]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [4]

    DouWD, Dai C J, Li S B 2004 J. Quantat. Spectro. Radia. Trans. 85 145

    [5]

    Li S B, Dai C J 2003 J. Quantat. Spectro. Radia. Trans. 77 345

    [6]

    Li M, Dai C J, Xie J 2010 Acta Phys. Sin. 59 3154(in Chinese)[李 鸣,戴长建, 谢军 2010 物理学报 59 3154]

    [7]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3123

    [8]

    Li C Q, Dai C J, Lu J 2000 Chin. Phys. B 9 500

    [9]

    Yaseen M, Ali R, Nadeem A, Bhatti S A, Baig M A 2002 Eur. Phys. J. D 20 177

    [10]

    LindsayMD, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [11]

    Lindsay M D, Cai L T, Schinn G W, Dai C J, Gallagher T F 1992 Phys. Rev. A 45 231

    [12]

    Li S B, Dai C J, Sun W, Xue P 2002 J. Elec. Spectro. Rela. Phen. 127 183

    [13]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [14]

    Ali R, Yaseen M, Nadeem A, Bhatti S A, Baig M A 1999 J. Phys. B 32 953

    [15]

    Yi J, Park H, Lee J 2001 J. Kore. Phys. Soci. 39 916

    [16]

    Zhao H Y, Dai C J, Guan F 2009 Acta Phys. Sin. 58 215(in Chinese)[赵洪英, 戴长建, 关锋 2009 物理学报 58 215]

    [17]

    Hu S F, Zhang S, Mei S M, Qiu J Z, Chen X 1990 J. Quantat. Spectro. Radia. Trans. 43 75

    [18]

    QinWJ, Dai C J, Xiao Y, Zhao H Y 2009 Chin. Phys. B 18 3384

    [19]

    Jia L J, Jing C Y, Zhou Z Y, Lin F C 1993 J. Opt. Soc. Am. B 10 1317

    [20]

    Zhao H Y, Dai C J, Guan F 2009 J. Phys. B 42 065001

    [21]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Opt. Soc. Am. B 17 1607

    [22]

    Jayasekharan T, Razvi M A N, Bhale G L 1996 J. Opt. Soc. Am. B 13 641

    [23]

    Gomonai A I, Plekan O I 2003 J. Phys. B: At. Mol. Opt. Phys. 36 4155

    [24]

    Pulhani A K, Shah M L, Vas Dev, Suri B M 2004 J. Opt. Soc. Am. B 21 1117

    [25]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy Levels— The Rare-Earth Elements(Washington: National Burean of Standards)p162

    [26]

    Guan F, Dai C J, Zhao H Y 2008 Chin. Phys. B 17 3655

  • [1]

    Boker J, Freeman R R, CookeWE 1982 Phys. Rev. Lett. 48 1242

    [2]

    Li J M 1983 Acta Phys. Sin. 32 84(in Chinese)[李家明 1983 物理学报 32 84]

    [3]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [4]

    DouWD, Dai C J, Li S B 2004 J. Quantat. Spectro. Radia. Trans. 85 145

    [5]

    Li S B, Dai C J 2003 J. Quantat. Spectro. Radia. Trans. 77 345

    [6]

    Li M, Dai C J, Xie J 2010 Acta Phys. Sin. 59 3154(in Chinese)[李 鸣,戴长建, 谢军 2010 物理学报 59 3154]

    [7]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3123

    [8]

    Li C Q, Dai C J, Lu J 2000 Chin. Phys. B 9 500

    [9]

    Yaseen M, Ali R, Nadeem A, Bhatti S A, Baig M A 2002 Eur. Phys. J. D 20 177

    [10]

    LindsayMD, Dai C J, Lyons B J, Mahon C R, Gallagher T F 1994 Phys. Rev. A 50 5058

    [11]

    Lindsay M D, Cai L T, Schinn G W, Dai C J, Gallagher T F 1992 Phys. Rev. A 45 231

    [12]

    Li S B, Dai C J, Sun W, Xue P 2002 J. Elec. Spectro. Rela. Phen. 127 183

    [13]

    Jones R R, Dai C J, Gallagher T F 1990 Phys. Rev. A 41 316

    [14]

    Ali R, Yaseen M, Nadeem A, Bhatti S A, Baig M A 1999 J. Phys. B 32 953

    [15]

    Yi J, Park H, Lee J 2001 J. Kore. Phys. Soci. 39 916

    [16]

    Zhao H Y, Dai C J, Guan F 2009 Acta Phys. Sin. 58 215(in Chinese)[赵洪英, 戴长建, 关锋 2009 物理学报 58 215]

    [17]

    Hu S F, Zhang S, Mei S M, Qiu J Z, Chen X 1990 J. Quantat. Spectro. Radia. Trans. 43 75

    [18]

    QinWJ, Dai C J, Xiao Y, Zhao H Y 2009 Chin. Phys. B 18 3384

    [19]

    Jia L J, Jing C Y, Zhou Z Y, Lin F C 1993 J. Opt. Soc. Am. B 10 1317

    [20]

    Zhao H Y, Dai C J, Guan F 2009 J. Phys. B 42 065001

    [21]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Opt. Soc. Am. B 17 1607

    [22]

    Jayasekharan T, Razvi M A N, Bhale G L 1996 J. Opt. Soc. Am. B 13 641

    [23]

    Gomonai A I, Plekan O I 2003 J. Phys. B: At. Mol. Opt. Phys. 36 4155

    [24]

    Pulhani A K, Shah M L, Vas Dev, Suri B M 2004 J. Opt. Soc. Am. B 21 1117

    [25]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy Levels— The Rare-Earth Elements(Washington: National Burean of Standards)p162

    [26]

    Guan F, Dai C J, Zhao H Y 2008 Chin. Phys. B 17 3655

  • [1] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [2] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [3] 赵健东, 辛洁. 高激发态原子间的范德瓦尔斯相互作用. 物理学报, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [4] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [5] 杨騄, 戴长建, 赵艳红. 用光电离技术探测钐原子的奇宇称束缚激发态的光谱. 物理学报, 2013, 62(5): 053201. doi: 10.7498/aps.62.053201
    [6] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
    [7] 赵健东, 辛洁. 高激发态原子的相干效应 . 物理学报, 2012, 61(19): 193302. doi: 10.7498/aps.61.193302
    [8] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱. 物理学报, 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [9] 秦文杰, 戴长建, 赵洪英, 肖颖. 利用自电离探测技术研究Sm原子Rydberg态光谱. 物理学报, 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [10] 肖颖, 戴长建, 赵洪英, 秦文杰. 铕原子奇宇称高激发态共振电离光谱的研究. 物理学报, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [11] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [12] 舒晓武, 张森, 谢卫军, 方达渭. 原子两步激发禁戒态寿命及环境辐射的影响. 物理学报, 1996, 45(8): 1275-1279. doi: 10.7498/aps.45.1275
    [13] 沈异凡, 李万兴. 激发态Na(3P)原子的碰撞缔合电离. 物理学报, 1993, 42(1): 32-39. doi: 10.7498/aps.42.32
    [14] 张森, 梅式民, 邱济真, 徐云飞. SrI 4dnp和4dnf奇宇称J=1系列自电离态光谱. 物理学报, 1990, 39(10): 1536-1541. doi: 10.7498/aps.39.1536
    [15] 鲍敏琪, 仝晓民, 李家明. 离化态原子的激发态结构. 物理学报, 1989, 38(11): 1802-1808. doi: 10.7498/aps.38.1802
    [16] 徐雷, 赵有源, 王国益, 王兆永. Al原子高激发态nf2F光谱与Stark效应观察. 物理学报, 1989, 38(10): 1658-1664. doi: 10.7498/aps.38.1658
    [17] 刘磊, 李家明. Fr原子的激发态结构. 物理学报, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [18] 唐小玲, 王祖赓, 秦莉娟, 郑一善. 基于两步混合激发Na2-Na系统的可调谐红外受激辐射. 物理学报, 1988, 37(8): 1227-1235. doi: 10.7498/aps.37.1227
    [19] 张绮香, 韩全生, 罗正纪, 程文芹. 碰撞微扰下的双重激发态原子的近共振散射. 物理学报, 1981, 30(7): 962-967. doi: 10.7498/aps.30.962
    [20] 朱熙文. 高激发态钠原子的量子拍实验的某些分析. 物理学报, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
计量
  • 文章访问数:  3812
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-08
  • 修回日期:  2011-03-31
  • 刊出日期:  2012-03-15

Sm原子的偶宇称高激发态的光谱研究

  • 1. 显示材料与光电器件教育部重点实验室, 天津 300384;
  • 2. 天津理工大学理学院, 天津 300384
    基金项目: 国家自然科学基金(批准号: 10574098, 10674102)和天津市自然科学基金(批准号: 05YFJMJC05200)资助的课题.

摘要: 采用双色三步激发和光电离过程,对Sm原子的偶宇称高激发态的光谱进行了研究.先采用两条激发路线分别将Sm原子两步共振激发至待测的高激发态,然后利用光电离技术对其进行探测.分别将第一束激光的波长固定在627.50nm和624.41nm上,以便将Sm原子从亚稳态共振激发到由4f66s6p电子组态所构成的两个原子状态上.第二束激光在440700nm的波段范围内扫描,不仅使Sm原子在3004038065cm-1能域内的偶宇称高激发态上布居,将其进一步光电离,测量了其光谱.通过光谱定标和选择定则等分析手段,本工作不仅精确获得了136个态的能级位置,而且也唯一确定了其总角动量,并且给出了相关跃迁的相对谱线强度.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回