搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dicke模型的量子混沌和单粒子相干动力学特性

宋立军 严冬 盖永杰 王玉波

引用本文:
Citation:

Dicke模型的量子混沌和单粒子相干动力学特性

宋立军, 严冬, 盖永杰, 王玉波

Quantum chaos and the dynamic properties of single-particle coherence in Dicke model

Song Li-Jun, Yan Dong, Gai Yong-Jie, Wang Yu-Bo
PDF
导出引用
  • 量子化的Dicke模型在非旋波近似条件下表现为量子混沌动力学特征.利用单粒子一阶时间关联函数,通过数值计算详细考察了Dicke模型中单粒子相干动力学特性.结果表明:当初始相干态处在混沌区域时,一阶时间关联函数曲线衰减较快,而当初始相干态处在规则区域时,一阶时间关联函数曲线衰减较慢,单粒子相干动力学对初态具有较强的敏感性,经典混沌抑制量子相干. 考察单粒子相干动力学在相空间的平均演化性质,得到一种较好的量子经典对应关系.最后研究了相空间单粒子相干的整体动力学性质,更好地揭示了相空间的混沌和规则结构.
    The Dicke model displays quantum chaotic dynamic properties in the without-rotating-wave approximation. We explore the dynamic properties of the single-particle coherence in Dicke model by using the first-order temporal correlation function and numerical simulation. The results reveal that the first-order temporal correlation function decays very rapidly when the initial coherent state is centered in chaotic regions, but rather slowly when the initial coherent state is centered in regular regions. This indicates that the single-particle coherence is highly sensitive to initial states, and the classical chaos suppresses quantum coherence. The mean single particle coherence during the evolution is studied, and a better quantum-classical correspondence is obtained. Finally, the dynamics of single-particle coherence in the whole phase space is investigated, which reveals the chaotic and regular structures of the phase space more clearly.
    • 基金项目: 国家自然科学基金(批准号: 10947019)和吉林省教育厅科学技术研究计划(批准号:2009237)资助的课题.
    [1]

    [1]Haake F 1991 Quantum Signature of Chaos (Berlin:Springer -Verlag)

    [2]

    [2]Heller E J 1984 Phys. Rev. Lett. 53 1515

    [3]

    [3]Schack R, D′Ariano G M, Caves C M 1994 Phys. Rev. E 50 972

    [4]

    [4]Lu P, Wang S J 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢鹏、王顺金 2009 物理学报 58 5955]

    [5]

    [5]Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭亮、梁先庭 2009 物理学报 58 50]

    [6]

    [6]Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [7]

    [7]Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [8]

    [8]Srensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63

    [9]

    [9]Srensen A 2002 Phys. Rev. A 65 043610

    [10]

    ]Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [11]

    ]Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B 39 559

    [12]

    ]Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [13]

    ]Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [14]

    ]Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [15]

    ]Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [16]

    ]Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [17]

    ]Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [18]

    ]Zhang D Y, Guo P, Gao F 2007 Acta Phys. Sin. 56 1906 (in Chinese) [张登玉、郭萍、高峰 2007 物理学报 56 1906]

    [19]

    ]Jin G R, Law C K 2008 Phys. Rev. A 78 063620

    [20]

    ]Dicke R H 1954 Phys. Rev. 93 99

    [21]

    ]Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [22]

    ]Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 661 (in Chinese) [房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [23]

    ]Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

    [24]

    ]Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2005 Phys. Rev. A 72 021604

    [25]

    ]Chuu C S, Schreck F, Meyrath T P, Hanssen J L, Price G N, Raizen M G 2005 Phys. Rev. Lett. 95 260403

    [26]

    ]Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2007 Phys. Rev. Lett. 98 030407

    [27]

    ]Widera A, Trotzky S, Cheinet P, Folling S, Gerbier F, Bloch I 2008 Phys. Rev. Lett. 100 140401

  • [1]

    [1]Haake F 1991 Quantum Signature of Chaos (Berlin:Springer -Verlag)

    [2]

    [2]Heller E J 1984 Phys. Rev. Lett. 53 1515

    [3]

    [3]Schack R, D′Ariano G M, Caves C M 1994 Phys. Rev. E 50 972

    [4]

    [4]Lu P, Wang S J 2009 Acta Phys. Sin. 58 5955 (in Chinese) [卢鹏、王顺金 2009 物理学报 58 5955]

    [5]

    [5]Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese) [郭亮、梁先庭 2009 物理学报 58 50]

    [6]

    [6]Wang X G, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [7]

    [7]Hou X W, Chen J H, Hu B 2005 Phys. Rev. A 71 034302

    [8]

    [8]Srensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63

    [9]

    [9]Srensen A 2002 Phys. Rev. A 65 043610

    [10]

    ]Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [11]

    ]Song L J, Wang X G, Yan D, Zong Z G 2006 J. Phys. B 39 559

    [12]

    ]Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [13]

    ]Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬、宋立军、陈殿伟 2009 物理学报 58 3679]

    [14]

    ]Emerson J, Weinstein Y S, Lloyd S, Cory D G 2002 Phys. Rev. Lett. 89 284102

    [15]

    ]Weinstein Y S, Hellberg C S 2005 Phys. Rev. E 71 016209

    [16]

    ]Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [17]

    ]Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2006 Phys. Lett. A 353 216

    [18]

    ]Zhang D Y, Guo P, Gao F 2007 Acta Phys. Sin. 56 1906 (in Chinese) [张登玉、郭萍、高峰 2007 物理学报 56 1906]

    [19]

    ]Jin G R, Law C K 2008 Phys. Rev. A 78 063620

    [20]

    ]Dicke R H 1954 Phys. Rev. 93 99

    [21]

    ]Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [22]

    ]Fang Y C, Yang Z A, Yang L Y 2008 Acta Phys. Sin. 57 661 (in Chinese) [房永翠、杨志安、杨丽云 2008 物理学报 57 661]

    [23]

    ]Zhang W M, Feng D H, Gilmore R 1990 Rev. Mod. Phys. 62 867

    [24]

    ]Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2005 Phys. Rev. A 72 021604

    [25]

    ]Chuu C S, Schreck F, Meyrath T P, Hanssen J L, Price G N, Raizen M G 2005 Phys. Rev. Lett. 95 260403

    [26]

    ]Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2007 Phys. Rev. Lett. 98 030407

    [27]

    ]Widera A, Trotzky S, Cheinet P, Folling S, Gerbier F, Bloch I 2008 Phys. Rev. Lett. 100 140401

  • [1] 刘妮, 梁九卿. 含时驱动的Dicke模型的混沌特性. 物理学报, 2017, 66(11): 110502. doi: 10.7498/aps.66.110502
    [2] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变. 物理学报, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [3] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [4] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [5] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [6] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [7] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [8] 丛红璐, 任学藻, 姜道来, 廖旭. 精确求解级联型三能级原子与单模相干态光场场熵的演化特性. 物理学报, 2010, 59(5): 3221-3226. doi: 10.7498/aps.59.3221
    [9] 廖旭, 丛红璐, 姜道来, 任学藻. 非旋波近似下频率变化的光场对原子布居反转的调控. 物理学报, 2010, 59(8): 5508-5513. doi: 10.7498/aps.59.5508
    [10] 严冬, 宋立军. 周期脉冲撞击的两分量Bose-Einstein凝聚系统的单粒子相干和对纠缠. 物理学报, 2010, 59(10): 6832-6836. doi: 10.7498/aps.59.6832
    [11] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [12] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [13] 任学藻, 姜道来, 丛红璐, 廖旭. 精确计算非旋波近似下二能级系统的能谱和动力学性质. 物理学报, 2009, 58(8): 5406-5411. doi: 10.7498/aps.58.5406
    [14] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [15] 贾 飞, 谢双媛, 羊亚平. 非旋波近似下频率变化的场与原子的相互作用. 物理学报, 2006, 55(11): 5835-5841. doi: 10.7498/aps.55.5835
    [16] 万琳, 刘素梅, 刘三秋. T-C模型中虚光子过程对光场压缩效应的影响. 物理学报, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [17] 黄春佳, 厉江帆, 周明, 方家元. 虚光场对双模压缩真空场与原子相互作用系统中光子统计性质的影响. 物理学报, 2001, 50(10): 1920-1924. doi: 10.7498/aps.50.1920
    [18] 陶向阳, 刘三秋, 聂义友, 傅传鸿. Kerr效应和虚光场对三能级原子-场系统光子反聚束效应的影响. 物理学报, 2000, 49(8): 1471-1477. doi: 10.7498/aps.49.1471
    [19] 方细明, 冯芒, 施磊, 高克林, 朱熙文. 在相干态表象中精确求解无旋波近似的Jaynes-Cummings模型. 物理学报, 1997, 46(11): 2160-2165. doi: 10.7498/aps.46.2160
    [20] 李高翔, 彭金生. 旋波近似和非旋波近似下Jaynes-Cummings模型中光场位相涨落. 物理学报, 1992, 41(5): 766-773. doi: 10.7498/aps.41.766
计量
  • 文章访问数:  7161
  • PDF下载量:  935
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-16
  • 修回日期:  2009-11-27
  • 刊出日期:  2010-03-05

Dicke模型的量子混沌和单粒子相干动力学特性

  • 1. (1)长春大学理学院,长春 130022; (2)长春理工大学理学院,长春 130022
    基金项目: 国家自然科学基金(批准号: 10947019)和吉林省教育厅科学技术研究计划(批准号:2009237)资助的课题.

摘要: 量子化的Dicke模型在非旋波近似条件下表现为量子混沌动力学特征.利用单粒子一阶时间关联函数,通过数值计算详细考察了Dicke模型中单粒子相干动力学特性.结果表明:当初始相干态处在混沌区域时,一阶时间关联函数曲线衰减较快,而当初始相干态处在规则区域时,一阶时间关联函数曲线衰减较慢,单粒子相干动力学对初态具有较强的敏感性,经典混沌抑制量子相干. 考察单粒子相干动力学在相空间的平均演化性质,得到一种较好的量子经典对应关系.最后研究了相空间单粒子相干的整体动力学性质,更好地揭示了相空间的混沌和规则结构.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回