搜索

x
中国物理学会期刊

Peltier效应: 从线性到非线性

CSTR: 32037.14.aps.70.20201826

Peltier effect: From linear to nonlinear

CSTR: 32037.14.aps.70.20201826
PDF
HTML
导出引用
  • 热电制冷技术是一种环保型的制冷技术, 具有广阔的应用前景. 其中Peltier效应在热电制冷过程中具有核心作用, 但是由于Peltier系数很难测量, 在实际应用过程中通常是首先得到Seebeck系数, 然后利用Kelvin第二关系式间接得到Peltier系数. 需要注意的是, Kelvin第二关系式是在线性条件下(Ohm定律、Fourier定律等)得到的, 而在实际过程中非线性的电流-电压关系(肖特基结、pn结等)和热输运关系却是大量存在的. 在纳米尺度, 量子效应将起到主导作用, 此时Peltier效应应该考虑非线性的影响, Kelvin第二关系式的适用性也应该重新考虑. 本文综述了采用不同方法对Peltier系数和Kelvin第二关系式的理论推导, 讨论了推导过程中利用的假设条件; 概述了Peltier系数实验测定的几种方法, 讨论了各种附加效应对Peltier系数测定的影响; 并介绍了非线性Peltier效应的理论工作. 最后本文讨论了在非线性条件下Peltier效应的研究策略和可行方向.

     

    Thermoelectric refrigeration technology is an environment-friendly refrigeration technology with broad application prospects. The Peltier effect plays a central role in the thermoelectric refrigeration process, however, the Peltier coefficient is difficult to measure. So in the actual application process, first, the Seebeck coefficient is usually obtained, and then the Peltier coefficient is achieved by the Kelvin's second relation indirectly. It should be noted that the Kelvin's second relation is obtained under linear conditions (Ohm's law, Fourier's law, etc.), while in practice, nonlinear current-voltage relationships (Schottky junction, pn junction, etc.) and nonlinear heat transport relations are common. And quantum effect plays a leading role in the nano-scaled region, then the Peltier effect must consider the influence of nonlinearity, and the applicability of the Kelvin's second relation must also be reconsidered. This paper first summarizes the theoretical derivation of Peltier coefficient and the Kelvin’s second relation by different methods, then discusses the hypothetical conditions used in the derivation process, and points out that the Kelvin’s second relation can be established only under the hypothetical linear conditions. Then, several experimental methods of determining the Peltier coefficient are summarized. It is found that there are still many problems encountered in the measurement of Peltier coefficient, and the Kelvin’s second relation has not been proved accurately by practical experiments. Various side effects (Fourier effect, Thomson effect, Joule effect and Seebeck effect) in the measurement process affect the temperature distribution of the system directly or indirectly, making it difficult to measure Peltier heat. After that, the theoretical work of nonlinear Peltier effect is briefly introduced. In the process of thermal transport and electrical transport on a microscopic scale, quantum effect plays a leading role, and the nonlinear part of the Peltier coefficient gradually emerges. These studies show the cognition of researchers that the Peltier effect gradually changes from linear to nonlinear. The nonlinear Peltier effect not only exists objectively, but also is very important in the practical applications. However, the current research on the nonlinear Peltier effect is still at the theoretical level, and there is almost no experimental work. Finally, we discuss the research strategy and feasible research direction of Peltier effect under nonlinear conditions. An integrated study of the relationship among various heterojunction band structures, interface properties and interface effects is helpful in comprehensively understanding the Peltier effect. With the continuous improvement of experimental conditions and theoretical research, the study of nonlinear Peltier effect is expected to realize a new breakthrough.

     

    目录

    /

    返回文章
    返回