搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扰动Nizhnik-Novikov-Veselov系统分形孤子渐近解

石兰芳 周先春 莫嘉琪

引用本文:
Citation:

扰动Nizhnik-Novikov-Veselov系统分形孤子渐近解

石兰芳, 周先春, 莫嘉琪

Asymptotic solution for fractal soliton of disturbed Nizhnik-Novikov-Veselov system

Shi Lan-Fang, Zhou Xian-Chun, Mo Jia-Qi
PDF
导出引用
  • 文章研究了一类扰动Nizhnik-Novikov-Veselov非线性系统, 利用特殊的渐近方法得到了相应系统分形孤子渐近解.
    A class of nonlinear disturbed Nizhnik-Novikov-Veselov system is studied. Using the special asymptotic method, the asymptotic solution for fractal soliton of corresponding system is obtained.
    • 基金项目: 国家自然科学基金(批准号:40876010)、中国科学院战略性先导科技专项应对气候变化的碳收支认证及相关问题项目(批准号:XDA01020304)、上海市教育委员会E-研究院建设计划项目(批准号:E03004)、浙江省自然科学基金(批准号:Y6110502)、安徽高校省级自然科学研究项目(批准号:KJ2011A135)、江苏省自然科学基金(批准号:BK2011042)、江苏高校优势学科建设工程资助项目和江苏省高校自然科学研究计划项目(批准号:08KJB510010)资助的课题.
    [1]

    Parkes E J,Duffy B R 1996 Comp. Phys. Commun. 98 288

    [2]

    Wang M L 1995 Phys. Lett. A 199 169

    [3]
    [4]

    Yan Z Y,Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚、张鸿庆 2000 物理学报 49 2113]

    [5]
    [6]

    Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵 2000 物理学报 49 1409]

    [7]
    [8]

    Parkes E J,Duffy B R,Abbott P C 2001 Phys. Lett. A 295 280

    [9]
    [10]
    [11]

    Liu S K,Liu S D,Fu Z T 2001 Acta Phys. Sin. 50 2068 (in Chinese)[刘式适、刘适达、付遵涛 2001 物理学报 50 2068]

    [12]

    Liu S D,Fu Z T,Liu S K,Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese)[刘式达、付遵涛、刘式适、赵 强 2002 物理学报 51 718]

    [13]
    [14]
    [15]

    Wu G J,Han J H,Shi L M,Zhang M 2006 Acta Phys. Sin. 55 3858 (in Chinese)[吴国将、韩家骅、史良马、张 苗 2006 物理学报 55 3858]

    [16]
    [17]

    Sirendaoreji,Sun J 2003 Phys. Lett. A 309 387

    [18]

    Taogetusang,Sirenlaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese)[套格图桑、斯仁道尔吉 2006 物理学报 55 13]

    [19]
    [20]

    Taogetusang,Sirenlaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese)[套格图桑、斯仁道尔吉 2006 物理学报 55 3246]

    [21]
    [22]
    [23]

    Li X Z,Li X Y,Zhao L Y, Zhang J L 2008 Acta Phys. Sin. 57 2203 (in Chinese)[李向正、李修勇、赵丽英、张金良 2008 物理学报 57 2203]

    [24]
    [25]

    Ying J P,Lou S Y 2003 Chin. Phys. Lett. 20 1448

    [26]

    Ying J P,Zheng C L,Zhu J M 2005 Commun. Theor. Phys. 44 203

    [27]
    [28]

    Fang J P,Zheng C L 2005 Chin. Phys. 14 670

    [29]
    [30]

    Zhen Y B,Wang M L,Miao T D 2004 Phys. Lett. A 323 77

    [31]
    [32]
    [33]

    Li X Z Zhang J L,Wang Y M,Wang M L 2004 Acta Phys,Sin. 53 4045 (in Chinese)[李向正、张金良、王跃明、王明亮 2004 物理学报 53 4045]

    [34]

    Wang M L,Li X Z,Zhang J L 2008 Phys. Lett. A 372 417

    [35]
    [36]

    Ma Y L,Li B Q,Sun J Z 2009 Acta Phys. Sin. 58 7402 (in Chinese)[马玉兰、李帮庆、孙践知 2009 物理学报 58 7402]

    [37]
    [38]

    Zhang S I,Zhu X N,Wang Y M,Lou S Y 2008 Commun. Theor. Phys. 49 829

    [39]
    [40]
    [41]

    Zhang S I,Lou S Y 2007 Commun. Theor. Phys. 48 385

    [42]

    Taogetusang,Sirenlaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 2121]

    [43]
    [44]

    Taogetusang,Sirenlaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 5887]

    [45]
    [46]
    [47]

    Zhou Z C,Ma S H,Fang J P,Ren Q B 2010 Acta Phys. Sin. 59 7540 (in Chinese)[周振春、马松华、方建平、任清褒 2010 物理学报 59 7540]

    [48]
    [49]

    D'Aprile T,Pistoia A 2010 J. Differ. Equations,248 556

    [50]
    [51]

    Barbu L,Morosanu G 2007 Singularly Perturbed Boundary-Value Problems Basel: Birkhauserm Verlag AG)

    [52]
    [53]

    Barbu L,Cosma E 2009 J. Math. Anal. Appl. 351 392

    [54]
    [55]

    Shin-Ichiro E,Matsuzawa H 2010 Discrete Contin. Dyn. Syst. 26 910

    [56]

    Kellogg R B,Kopteva N 2010 J. Differ. Eqns. 248 184

    [57]
    [58]
    [59]

    Suzuki R 2010 Adv. Differ. Eqns. 15 283

    [60]

    Mo J Q 2009 Sci. in China,Ser. G 52 1007

    [61]
    [62]
    [63]

    Mo J Q,Chen X F 2010 Chin. Phys. B 19 100203

    [64]

    Mo J Q,Lin Y H,Lin W T 2010 Chin. Phys. B 19 030202

    [65]
    [66]
    [67]

    Mo J Q 2010 Chin. Phys. B 19 010203.

    [68]
    [69]

    Shi L F, Mo J Q 2010 Chin. Phys. B 19 050203

    [70]
    [71]

    Zhou X C,Lin Y H,Lin W T, Mo J Q 2009 Chin. Phys. B 18 4603

    [72]

    Zhou X C,Lin Y H,Wang H, Mo J Q 2009 Acta Oceanologica Sin. 28 1

    [73]
    [74]
    [75]

    Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese)[石兰芳、莫嘉琪 2009 物理学报 58 8123]

    [76]

    Zhou X C,Lin W T,Lin Y H, Mo J Q 2010 Acta Phys. Sin. 59 2173 (in Chinese)[周先春、林万涛、林一骅、莫嘉琪 2010 物理学报 59 2173]

    [77]
    [78]
    [79]

    Shi L F,Zhou X C 2010 Acta Phys. Sin. 59 2915 (in Chinese)[石兰芳、周先春 2010 物理学报 59 2915]

    [80]
    [81]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York:CRC Press CO)

  • [1]

    Parkes E J,Duffy B R 1996 Comp. Phys. Commun. 98 288

    [2]

    Wang M L 1995 Phys. Lett. A 199 169

    [3]
    [4]

    Yan Z Y,Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚、张鸿庆 2000 物理学报 49 2113]

    [5]
    [6]

    Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵 2000 物理学报 49 1409]

    [7]
    [8]

    Parkes E J,Duffy B R,Abbott P C 2001 Phys. Lett. A 295 280

    [9]
    [10]
    [11]

    Liu S K,Liu S D,Fu Z T 2001 Acta Phys. Sin. 50 2068 (in Chinese)[刘式适、刘适达、付遵涛 2001 物理学报 50 2068]

    [12]

    Liu S D,Fu Z T,Liu S K,Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese)[刘式达、付遵涛、刘式适、赵 强 2002 物理学报 51 718]

    [13]
    [14]
    [15]

    Wu G J,Han J H,Shi L M,Zhang M 2006 Acta Phys. Sin. 55 3858 (in Chinese)[吴国将、韩家骅、史良马、张 苗 2006 物理学报 55 3858]

    [16]
    [17]

    Sirendaoreji,Sun J 2003 Phys. Lett. A 309 387

    [18]

    Taogetusang,Sirenlaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese)[套格图桑、斯仁道尔吉 2006 物理学报 55 13]

    [19]
    [20]

    Taogetusang,Sirenlaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese)[套格图桑、斯仁道尔吉 2006 物理学报 55 3246]

    [21]
    [22]
    [23]

    Li X Z,Li X Y,Zhao L Y, Zhang J L 2008 Acta Phys. Sin. 57 2203 (in Chinese)[李向正、李修勇、赵丽英、张金良 2008 物理学报 57 2203]

    [24]
    [25]

    Ying J P,Lou S Y 2003 Chin. Phys. Lett. 20 1448

    [26]

    Ying J P,Zheng C L,Zhu J M 2005 Commun. Theor. Phys. 44 203

    [27]
    [28]

    Fang J P,Zheng C L 2005 Chin. Phys. 14 670

    [29]
    [30]

    Zhen Y B,Wang M L,Miao T D 2004 Phys. Lett. A 323 77

    [31]
    [32]
    [33]

    Li X Z Zhang J L,Wang Y M,Wang M L 2004 Acta Phys,Sin. 53 4045 (in Chinese)[李向正、张金良、王跃明、王明亮 2004 物理学报 53 4045]

    [34]

    Wang M L,Li X Z,Zhang J L 2008 Phys. Lett. A 372 417

    [35]
    [36]

    Ma Y L,Li B Q,Sun J Z 2009 Acta Phys. Sin. 58 7402 (in Chinese)[马玉兰、李帮庆、孙践知 2009 物理学报 58 7402]

    [37]
    [38]

    Zhang S I,Zhu X N,Wang Y M,Lou S Y 2008 Commun. Theor. Phys. 49 829

    [39]
    [40]
    [41]

    Zhang S I,Lou S Y 2007 Commun. Theor. Phys. 48 385

    [42]

    Taogetusang,Sirenlaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 2121]

    [43]
    [44]

    Taogetusang,Sirenlaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)[套格图桑、斯仁道尔吉 2009 物理学报 58 5887]

    [45]
    [46]
    [47]

    Zhou Z C,Ma S H,Fang J P,Ren Q B 2010 Acta Phys. Sin. 59 7540 (in Chinese)[周振春、马松华、方建平、任清褒 2010 物理学报 59 7540]

    [48]
    [49]

    D'Aprile T,Pistoia A 2010 J. Differ. Equations,248 556

    [50]
    [51]

    Barbu L,Morosanu G 2007 Singularly Perturbed Boundary-Value Problems Basel: Birkhauserm Verlag AG)

    [52]
    [53]

    Barbu L,Cosma E 2009 J. Math. Anal. Appl. 351 392

    [54]
    [55]

    Shin-Ichiro E,Matsuzawa H 2010 Discrete Contin. Dyn. Syst. 26 910

    [56]

    Kellogg R B,Kopteva N 2010 J. Differ. Eqns. 248 184

    [57]
    [58]
    [59]

    Suzuki R 2010 Adv. Differ. Eqns. 15 283

    [60]

    Mo J Q 2009 Sci. in China,Ser. G 52 1007

    [61]
    [62]
    [63]

    Mo J Q,Chen X F 2010 Chin. Phys. B 19 100203

    [64]

    Mo J Q,Lin Y H,Lin W T 2010 Chin. Phys. B 19 030202

    [65]
    [66]
    [67]

    Mo J Q 2010 Chin. Phys. B 19 010203.

    [68]
    [69]

    Shi L F, Mo J Q 2010 Chin. Phys. B 19 050203

    [70]
    [71]

    Zhou X C,Lin Y H,Lin W T, Mo J Q 2009 Chin. Phys. B 18 4603

    [72]

    Zhou X C,Lin Y H,Wang H, Mo J Q 2009 Acta Oceanologica Sin. 28 1

    [73]
    [74]
    [75]

    Shi L F, Mo J Q 2009 Acta Phys. Sin. 58 8123 (in Chinese)[石兰芳、莫嘉琪 2009 物理学报 58 8123]

    [76]

    Zhou X C,Lin W T,Lin Y H, Mo J Q 2010 Acta Phys. Sin. 59 2173 (in Chinese)[周先春、林万涛、林一骅、莫嘉琪 2010 物理学报 59 2173]

    [77]
    [78]
    [79]

    Shi L F,Zhou X C 2010 Acta Phys. Sin. 59 2915 (in Chinese)[石兰芳、周先春 2010 物理学报 59 2915]

    [80]
    [81]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method (New York:CRC Press CO)

  • [1] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法. 物理学报, 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [2] 韩祥临, 林万涛, 许永红, 莫嘉琪. 广义Duffing扰动振子随机共振机理的渐近解. 物理学报, 2014, 63(17): 170204. doi: 10.7498/aps.63.170204
    [3] 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62(6): 060201. doi: 10.7498/aps.62.060201
    [4] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [5] 石兰芳, 欧阳成, 莫嘉琪. 一类海-气耦合振子模型行波解的渐近解法. 物理学报, 2012, 61(12): 120201. doi: 10.7498/aps.61.120201
    [6] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [7] 林万涛, 陈丽华, 欧阳成, 莫嘉琪. 厄尔尼诺/拉尼娜-南方涛动非线性扰动模型孤子的渐近解法. 物理学报, 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [8] 徐惠, 陈丽华, 莫嘉琪. 一类奇摄动薄板弯曲问题的匹配渐近解. 物理学报, 2011, 60(10): 100201. doi: 10.7498/aps.60.100201
    [9] 莫嘉琪, 程荣军, 葛红霞. 具有控制项的弱非线性发展方程行波解. 物理学报, 2011, 60(5): 050204. doi: 10.7498/aps.60.050204
    [10] 莫嘉琪. 一类非线性扰动发展方程的广义迭代解. 物理学报, 2011, 60(2): 020202. doi: 10.7498/aps.60.020202
    [11] 汪娜, 倪明康. 经典物理中的扰动时滞模型解. 物理学报, 2011, 60(5): 050203. doi: 10.7498/aps.60.050203
    [12] 许永红, 温朝晖, 莫嘉琪. 扰动mKdV耦合系统的孤子解. 物理学报, 2011, 60(5): 050205. doi: 10.7498/aps.60.050205
    [13] 莫嘉琪, 姚静荪. 一个广义扰动mKdV耦合系统2极孤子的近似解. 物理学报, 2010, 59(8): 5190-5193. doi: 10.7498/aps.59.5190
    [14] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [15] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解. 物理学报, 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [16] 莫嘉琪. 一类广义Sine-Gordon扰动方程的解析解. 物理学报, 2009, 58(5): 2930-2933. doi: 10.7498/aps.58.2930
    [17] 莫嘉琪, 陈丽华. 一类Landau-Ginzburg-Higgs扰动方程孤子的近似解. 物理学报, 2008, 57(8): 4646-4648. doi: 10.7498/aps.57.4646
    [18] 莫嘉琪, 姚静荪. 扰动KdV方程孤子的同伦映射解. 物理学报, 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [19] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法. 物理学报, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [20] 莫嘉琪, 王 辉, 林一骅. 广义Landau-Ginzburg-Higgs方程孤子解的扰动理论. 物理学报, 2005, 54(12): 5581-5584. doi: 10.7498/aps.54.5581
计量
  • 文章访问数:  4448
  • PDF下载量:  710
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-09
  • 修回日期:  2011-02-01
  • 刊出日期:  2011-11-15

扰动Nizhnik-Novikov-Veselov系统分形孤子渐近解

  • 1. 南京信息工程大学数理学院,南京 210044;
  • 2. 河海大学理学院,南京 210098;
  • 3. 南京信息工程大学电子与信息工程学院气象传感网技术工程中心,南京 210044;
  • 4. 安徽师范大学,芜湖 241003
    基金项目: 国家自然科学基金(批准号:40876010)、中国科学院战略性先导科技专项应对气候变化的碳收支认证及相关问题项目(批准号:XDA01020304)、上海市教育委员会E-研究院建设计划项目(批准号:E03004)、浙江省自然科学基金(批准号:Y6110502)、安徽高校省级自然科学研究项目(批准号:KJ2011A135)、江苏省自然科学基金(批准号:BK2011042)、江苏高校优势学科建设工程资助项目和江苏省高校自然科学研究计划项目(批准号:08KJB510010)资助的课题.

摘要: 文章研究了一类扰动Nizhnik-Novikov-Veselov非线性系统, 利用特殊的渐近方法得到了相应系统分形孤子渐近解.

English Abstract

参考文献 (81)

目录

    /

    返回文章
    返回