搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究

郝志红 胡子阳 张建军 郝秋艳 赵颖

引用本文:
Citation:

掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究

郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖

Influence of doped PEDOT ∶PSS on performance of polymer solar cells

Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying
PDF
导出引用
  • 研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mAcm-2,填充因子(FF)为63.7%,能量转换效率()达到4.45%.
    In this paper, we investigate the doping effect on conductivity of poly(3,4-ethylene dioxythiophene):poly (styrenesulphonic acid)(PEDOT ∶PSS)and its influence on performance of polymer solar cell. The experiment demonstrates that the conductivity of PEDOT ∶PSS is improved obviously by doping polar solvent dimethyl sulfoxide (DMSO). The maximum of the conductivity is 1.25 S/cm when the doping concentration reaches 10 wt%, which increases about three orders of magnitude compared with the undoped. Based on doped PEDOT ∶PSS used as an anode buffer layer, the polymer solar cell (ITO/PEDOT ∶PSS/P3HT:PCBM/LiF/Al) shows an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT ∶PSS. Consequently, it improves the whole performance of polymer solar cell. The short-circuit current density (Jsc) of 11.09 mAcm-2, the open circuit voltage (Voc) of 0.63 V, and the fill factor (FF) of 63.7% are obtained under 100 mW/cm2 air-mass solar simulator illumination, yielding a 4.45% power conversion efficiency ().
    • 基金项目: 国家高技术研究发展计划(批准号: 2009AA05Z422)、国家重点基础研究发展计划(批准号:2011CBA00705, 2011CBA00706, 2011CBA00707)和天津市应用基础及前沿技术研究计划(批准号: 08JCZDJC 22200)资助的课题.
    [1]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [2]
    [3]

    Li G, Shrotriya V, Yao Y, Yang Y 2005 Nat. Mater. 4 864

    [4]
    [5]

    Scharber M C, Mhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789

    [6]
    [7]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 4

    [8]
    [9]

    Li G, Yao Y, Yang H C, Shrotriya V, Yang G W, Yang Y 2007 Adv. Funct. Mater. 17 1636

    [10]
    [11]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [12]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [13]
    [14]
    [15]

    Hoppe H, Sariciftci N S 2006 J. Mater. Chem. 16 45

    [16]

    Moliton A, Nunzi J M 2006 Polym. Int. 55 583

    [17]
    [18]
    [19]

    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38

    [20]

    Mazhari B 2006 Sol. Energy Mater Sol. Cells 90 1021

    [21]
    [22]
    [23]

    Xue J G, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013

    [24]

    Zhang F L, Gadisa A, Inganas O, Svensson M, Andersson M R 2004 Appl. Phys. Lett. 84 3906

    [25]
    [26]

    Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Metal. 126 311

    [27]
    [28]
    [29]

    Snait H J, Kenrick H, Chiesa M, Friend R H 2005 Polymer 46 2573

    [30]
    [31]

    Huang J, Miller P F, Wilson J S, de Mello A J, de Mello J C, Bradley D D C 2005 Adv. Funct. Mater. 15 290

    [32]
    [33]

    Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, van Haesendonck C, van der Auweraer M, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354

    [34]
    [35]

    Wang T J, Qi Y Q, Xu J K, Hu X J, Chen P 2005 Appl. Surf. Sci. 250 188

    [36]
    [37]

    Ko C J, Lin Y K, Chen F C, Chu C W 2007 Appl. Phys. Lett. 90 063509

    [38]

    Braun D, Heeger A J 1991 J. Electron. Mater. 20 945

    [39]
    [40]
    [41]

    Huang Y F, Inigo A R, Chang C C, Li K C, Liang C F, Chang C W, Lim T S, Chen S H, White J D, Jeng U S, Su A C, Huang Y S, Peng K Y, Chen S A, Pai W W, Lin C H, Tameev A R, Novikov S V, Vannikov A V, Fann W S 2007 Adv. Funct. Mater. 17 2902

    [42]

    Mihailetchi V D, Xie H, de Bore B, L Koster J A, Blom P W M 2006 Adv. Funct. Mater. 19 699

    [43]
  • [1]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [2]
    [3]

    Li G, Shrotriya V, Yao Y, Yang Y 2005 Nat. Mater. 4 864

    [4]
    [5]

    Scharber M C, Mhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789

    [6]
    [7]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 4

    [8]
    [9]

    Li G, Yao Y, Yang H C, Shrotriya V, Yang G W, Yang Y 2007 Adv. Funct. Mater. 17 1636

    [10]
    [11]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [12]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [13]
    [14]
    [15]

    Hoppe H, Sariciftci N S 2006 J. Mater. Chem. 16 45

    [16]

    Moliton A, Nunzi J M 2006 Polym. Int. 55 583

    [17]
    [18]
    [19]

    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38

    [20]

    Mazhari B 2006 Sol. Energy Mater Sol. Cells 90 1021

    [21]
    [22]
    [23]

    Xue J G, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013

    [24]

    Zhang F L, Gadisa A, Inganas O, Svensson M, Andersson M R 2004 Appl. Phys. Lett. 84 3906

    [25]
    [26]

    Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Metal. 126 311

    [27]
    [28]
    [29]

    Snait H J, Kenrick H, Chiesa M, Friend R H 2005 Polymer 46 2573

    [30]
    [31]

    Huang J, Miller P F, Wilson J S, de Mello A J, de Mello J C, Bradley D D C 2005 Adv. Funct. Mater. 15 290

    [32]
    [33]

    Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, van Haesendonck C, van der Auweraer M, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354

    [34]
    [35]

    Wang T J, Qi Y Q, Xu J K, Hu X J, Chen P 2005 Appl. Surf. Sci. 250 188

    [36]
    [37]

    Ko C J, Lin Y K, Chen F C, Chu C W 2007 Appl. Phys. Lett. 90 063509

    [38]

    Braun D, Heeger A J 1991 J. Electron. Mater. 20 945

    [39]
    [40]
    [41]

    Huang Y F, Inigo A R, Chang C C, Li K C, Liang C F, Chang C W, Lim T S, Chen S H, White J D, Jeng U S, Su A C, Huang Y S, Peng K Y, Chen S A, Pai W W, Lin C H, Tameev A R, Novikov S V, Vannikov A V, Fann W S 2007 Adv. Funct. Mater. 17 2902

    [42]

    Mihailetchi V D, Xie H, de Bore B, L Koster J A, Blom P W M 2006 Adv. Funct. Mater. 19 699

    [43]
  • [1] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [2] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [3] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [4] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [5] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [6] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究. 物理学报, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [8] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [9] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [10] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析. 物理学报, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [11] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用. 物理学报, 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [12] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究. 物理学报, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [13] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度. 物理学报, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析. 物理学报, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [16] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [17] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [18] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [19] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [20] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
计量
  • 文章访问数:  12707
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-21
  • 修回日期:  2011-02-08
  • 刊出日期:  2011-11-15

/

返回文章
返回