搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应

罗礼进 仲崇贵 方靖淮 赵永林 周朋霞 江学范

引用本文:
Citation:

Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应

罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范

Responses of electronic structure and magnetism to tetragonal distortion and their influence on pressure for the Heusler alloy Mn2 NiAl

Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Zhao Yong-Lin, Zhou Peng-Xia, Jiang Xue-Fan
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理的投影缀加波方法,对Hg2CuTi型Mn2NiAl在由立方结构至四方结构的畸变过程中电子结构和磁性的变化规律及其对压力响应的规律进行了研究.研究发现:在由奥氏体相到马氏体相的相变中,由于Ni-Mn(A)原子间距的减小而使得杂化程度增强,导致占据态的态密度向低能区域移动,体系的能量降低,致使在马氏体相中的稳定性增大;在从奥氏体相到马氏体相的相变中,能带变宽,成键作用加强,从而在马氏体相中的稳定性增大;在四方畸变过程中,总磁矩的变化主要来源于Ni原子磁矩的变化;计算得到Mn2NiAl的零压体积弹性模量为125.69 GPa,其抗压缩性比其他常见的Heusler型合金弱.
    The change rules of electronic structure and magnetism in the process of transform from a cubic structure to a tetragonal structure and their responses to pressure for Hg2CuTi-type Mn2NiAl are studied by first principles method based on the density functional theory. The study shows that in the process of transform from a cubic austenite phase to a tetragonal martensite phase, the shift of the density of states of occupied state to ward lower energy in the martensitic phase results from the enhanced Ni-Mn(A) hybridization caused by a decrease in the Ni-Mn(A) distance, and it is the reason for the stabilization of the martensitic phase. In the process of transform from the austenite phase to the martensite phase, the bonding interaction becomes stronger, owing to energy band broadening, and it can improve the stabilization in the martensitic phase. In the process of tetragonal distortions, the change of total magnetic moment is determined by the change of magnetic moment of Ni atom. The bulk modulus at zero pressure of Mn2NiAl is calculated to be 125.69 GPa, so that we expect Mn2NiAl to be the more compressible material than the familiar Heusler alloys.
    • 基金项目: 国家自然科学基金(批准号:10974104,30970754,10874021)、江苏省自然科学基金(批准号:BK2006047)、江苏省高等学校自然科学基金(批准号:06KJA43014)和南通市应用研究计划(批准号:K2009058)资助的课题.
    [1]

    Murray S J, Marioni M, Allen S M, OHandley R C, Lograsso T A 2000 Appl. Phys. Lett. 77 886

    [2]
    [3]

    OHandley R C, Murray S J, Marioni M, Nembach H, Allen S M 2000 J. Appl. Phys. 87 4712

    [4]
    [5]

    Likhachev A A, Ullakko K 2000 Eur. Phys. J. B 14 263

    [6]
    [7]

    Ullakko K, Huang J K, Kantner C, OHandley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]
    [9]

    Liu W M, Wu B, Zhou X, Campbell D K, Chui S T, Niu Q 2002 Phys. Rev. B 65 172416

    [10]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [11]
    [12]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进、仲崇贵、江学范、方靖淮、蒋 青 2010 物理学报 59 521]

    [13]
    [14]
    [15]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 744

    [16]
    [17]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 2779

    [18]

    Zheng H X, Liu J, Xia M X, Li J G 2005 J. Alloys Compd. 387 265

    [19]
    [20]
    [21]

    Aich S, Das S, Al-Omari I A, Alagarsamy P, Chowdhury S G, Chakraborty M, Shield J E, Sellmyer D J 2009 J. Appl. Phys. 105 07A943

    [22]

    Tetsuji S, Yukihiko K, Toshiro K 2008 J. Appl. Phys. 103 07B322

    [23]
    [24]

    Liu Z H, Yu S Y, Yang H, Wu G H, Liu Y 2008 Intermetallics 16 447

    [25]
    [26]
    [27]

    Moya X, Maosa L, Planes A, Krenke T, Acet M, Wassermann E F 2006 Mater. Sci. Eng. A 438-440 911

    [28]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [29]
    [30]
    [31]

    Luo H Z, Liu G D, Meng F B, Li S J, Zhu W, Wu G H, Zhu X X, Jiang C B 2010 Physica B 405 3092

    [32]

    Fujii S, Ishida S, Asano S 1989 J. Phys. Soc. Jpn. 58 3657

    [33]
    [34]
    [35]

    Barman S R, Banik S, Shukla A K, Kamal C, Chakrabarti A 2007 Europhys. Lett. 80 57002

    [36]

    Pugaczowa-Michalska M 2007 J. Alloys Compd. 427 54

    [37]
    [38]
    [39]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [40]

    Pugaczowa-Michalska M 2008 J. Magn. Magn. Mater. 320 2083

    [41]
  • [1]

    Murray S J, Marioni M, Allen S M, OHandley R C, Lograsso T A 2000 Appl. Phys. Lett. 77 886

    [2]
    [3]

    OHandley R C, Murray S J, Marioni M, Nembach H, Allen S M 2000 J. Appl. Phys. 87 4712

    [4]
    [5]

    Likhachev A A, Ullakko K 2000 Eur. Phys. J. B 14 263

    [6]
    [7]

    Ullakko K, Huang J K, Kantner C, OHandley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]
    [9]

    Liu W M, Wu B, Zhou X, Campbell D K, Chui S T, Niu Q 2002 Phys. Rev. B 65 172416

    [10]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [11]
    [12]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进、仲崇贵、江学范、方靖淮、蒋 青 2010 物理学报 59 521]

    [13]
    [14]
    [15]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 744

    [16]
    [17]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 2779

    [18]

    Zheng H X, Liu J, Xia M X, Li J G 2005 J. Alloys Compd. 387 265

    [19]
    [20]
    [21]

    Aich S, Das S, Al-Omari I A, Alagarsamy P, Chowdhury S G, Chakraborty M, Shield J E, Sellmyer D J 2009 J. Appl. Phys. 105 07A943

    [22]

    Tetsuji S, Yukihiko K, Toshiro K 2008 J. Appl. Phys. 103 07B322

    [23]
    [24]

    Liu Z H, Yu S Y, Yang H, Wu G H, Liu Y 2008 Intermetallics 16 447

    [25]
    [26]
    [27]

    Moya X, Maosa L, Planes A, Krenke T, Acet M, Wassermann E F 2006 Mater. Sci. Eng. A 438-440 911

    [28]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [29]
    [30]
    [31]

    Luo H Z, Liu G D, Meng F B, Li S J, Zhu W, Wu G H, Zhu X X, Jiang C B 2010 Physica B 405 3092

    [32]

    Fujii S, Ishida S, Asano S 1989 J. Phys. Soc. Jpn. 58 3657

    [33]
    [34]
    [35]

    Barman S R, Banik S, Shukla A K, Kamal C, Chakrabarti A 2007 Europhys. Lett. 80 57002

    [36]

    Pugaczowa-Michalska M 2007 J. Alloys Compd. 427 54

    [37]
    [38]
    [39]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [40]

    Pugaczowa-Michalska M 2008 J. Magn. Magn. Mater. 320 2083

    [41]
计量
  • 文章访问数:  2895
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-12
  • 修回日期:  2011-05-09
  • 刊出日期:  2011-06-05

Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应

  • 1. 南通大学理学院,南通 226007;
  • 2. 常熟理工学院江苏省新型功能材料重点实验室,常熟 215500
    基金项目: 

    国家自然科学基金(批准号:10974104,30970754,10874021)、江苏省自然科学基金(批准号:BK2006047)、江苏省高等学校自然科学基金(批准号:06KJA43014)和南通市应用研究计划(批准号:K2009058)资助的课题.

摘要: 运用基于密度泛函理论的第一性原理的投影缀加波方法,对Hg2CuTi型Mn2NiAl在由立方结构至四方结构的畸变过程中电子结构和磁性的变化规律及其对压力响应的规律进行了研究.研究发现:在由奥氏体相到马氏体相的相变中,由于Ni-Mn(A)原子间距的减小而使得杂化程度增强,导致占据态的态密度向低能区域移动,体系的能量降低,致使在马氏体相中的稳定性增大;在从奥氏体相到马氏体相的相变中,能带变宽,成键作用加强,从而在马氏体相中的稳定性增大;在四方畸变过程中,总磁矩的变化主要来源于Ni原子磁矩的变化;计算得到Mn2NiAl的零压体积弹性模量为125.69 GPa,其抗压缩性比其他常见的Heusler型合金弱.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回