搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n,p柱宽度对超结SiGe功率二极管电学特性的影响

高勇 马丽 张如亮 王冬芳

引用本文:
Citation:

n,p柱宽度对超结SiGe功率二极管电学特性的影响

高勇, 马丽, 张如亮, 王冬芳

Effects of p and n pillar widths on electrical characteristicsof super junction SiGe power diodes

Ma Li, Wang Dong-Fang, Gao Yong, Zhang Ru-Liang
PDF
导出引用
  • 结合SiGe材料的优异性能与超结结构在功率器件方面的优势,提出了一种超结SiGe功率二极管.该器件有两个重要特点:一是由轻掺杂的p型柱和n型柱相互交替形成超结结构,取代传统功率二极管的n-基区;二是阳极p+区采用很薄的应变SiGe材料.该二极管可以克服常规Si p+n-n+功率二极管存在的一些缺陷,如阻断电压增大的同时,正向导通压降随之增大,反向恢复时间也变长.利用二维器件模拟软件MEDICI仿真
    By combining merits of both SJ structure and SiGe material, a novel super junction (SJ) SiGe power diode is presented. The two important characteristics of SJ SiGe diode are its columnar structure of alternating p/n pillars substituting n- base region of conventional Si p+n-n+ diode and its far thinner strained SiGe p+ layer, which can overcome the drawbacks of conventional Si power switching diodes, such as when the reverse blocking voltage is higher, the forward voltage drop is larger and the reverse recovery time becomes longer. For the SJ SiGe diode with 20% Ge content, the following conclusions can be obtained compared with comparable conventional Si power diodes: the breakdown voltages increase by 1.6 times, the forward voltage drop is reduced by 60 mV (at a current density of 10 A/cm2) and the softness factor S increases by 2 times. Though the reverse recovery time is shortened slightly, the peak reverse current density decreases by 17% and the soft recovery characteristics is improved notedly. The key parameters of the p and n pillar widths have imporant effects on the forward conduction characteristic, reverse blocking characteristic and reverse recovery characteristic of SJ SiGe power diode. The smaller the pillar width becomes, the higher the breakdown voltage is and the lower the reverse leakage current is, whereas the forward voltage drop increases slightly. The pillar width has no obviously monotonic effect on the reverse recovery characteristic. If the width is too small, the soft reverse recovery characteristic is degenerated. To optimize the parameter of pillar width, we can obtain excellent SJ SiGe diode with fast recovery speed, high breakdown voltage and low forward drop at the same time.
    • 基金项目: 陕西省教育厅专项科研项目(批准号:09JK640)资助的课题.
    [1]

    Carns T K, Chun S K 1994 IEEE Trans. E D 41 1273

    [2]

    Brown A R, Hurkx G A M, Huizing H G A, Peter M S, de Boer W B, van Berkum J G M, Zalm P C, Huang E, Koper N 1998 IEDM Tech. Dig. (San Francisco, California) p256

    [3]

    Qi H, Gao Y 2003 IEEE Applied Power Electronics Conference and Exposition (Florida, USA) p964

    [4]

    Gao Y, Ma L 2004 Chin. Phys. Lett. 21 414

    [5]

    Ma L, Gao Y, Wang C L 2004 Chin. Phys.13 1114

    [6]

    Baliga B J 1987 Modern Power Device (New York: John Wiley & Sons) p295

    [7]

    Chen X B, Johnny K O Sin 2001 IEEE Trans. E D 48 344

    [8]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754

    [9]

    Wang C L, Sun J 2009 Chin. Phys. B 18 1231

    [10]

    Friedhelm D. Bauer 2004 Solid-State Electronics 48 705

    [11]

    Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 237 (in Chinese) [舒 斌、戴显英、张鹤鸣 2004 物理学报 53 237]

    [12]

    Yu L S 2006 Semiconductor heterojunction physics (2nd ed)(Beijing: Science Press) p102 (in Chinese) [虞丽生 2006 半 导体异质结物理(第二版)(北京:科学出版社)第102页] 〖13] Rosenfeld D, Alterovitz S A 1994 Solid State Electronics 37 119

    [13]

    Kay L E, Tang T W 1991 J. Appl. Phys. 70 1483

    [14]

    Manku T, Nathan A 1992 IEEE Trans. E D 39 2082

    [15]

    Chen Z M, Wang J N 1999 Foundation of Material and Physics of semiconductors (Beijing: Science Press) p224 (in Chinese) [陈治明、王建农1999 半导体器件的材料物理学基础(北京:科学出版社)第224页]

    [16]

    Kondekar P N 2005 IEEE Conference on Electron Devices and solid-state circuits (China, Hong Kong) p551

    [17]

    Shenoy P M, Bhalla A, Dolny G M 1999 International Symposium on Power Semiconductor Devices & ICs(Canada, Toronto) p99

    [18]

    Ma L, Gao Y 2009 Acta Phys. Sin. 58 529 (in Chinese) [马 丽、高 勇 2009 物理学报 58 529]

    [19]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂、耿振海、段宝兴、贾护军、余 涔、任丽丽 2010 物理学报 59 566]

  • [1]

    Carns T K, Chun S K 1994 IEEE Trans. E D 41 1273

    [2]

    Brown A R, Hurkx G A M, Huizing H G A, Peter M S, de Boer W B, van Berkum J G M, Zalm P C, Huang E, Koper N 1998 IEDM Tech. Dig. (San Francisco, California) p256

    [3]

    Qi H, Gao Y 2003 IEEE Applied Power Electronics Conference and Exposition (Florida, USA) p964

    [4]

    Gao Y, Ma L 2004 Chin. Phys. Lett. 21 414

    [5]

    Ma L, Gao Y, Wang C L 2004 Chin. Phys.13 1114

    [6]

    Baliga B J 1987 Modern Power Device (New York: John Wiley & Sons) p295

    [7]

    Chen X B, Johnny K O Sin 2001 IEEE Trans. E D 48 344

    [8]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. 16 3754

    [9]

    Wang C L, Sun J 2009 Chin. Phys. B 18 1231

    [10]

    Friedhelm D. Bauer 2004 Solid-State Electronics 48 705

    [11]

    Shu B, Dai X Y, Zhang H M 2004 Acta Phys. Sin. 53 237 (in Chinese) [舒 斌、戴显英、张鹤鸣 2004 物理学报 53 237]

    [12]

    Yu L S 2006 Semiconductor heterojunction physics (2nd ed)(Beijing: Science Press) p102 (in Chinese) [虞丽生 2006 半 导体异质结物理(第二版)(北京:科学出版社)第102页] 〖13] Rosenfeld D, Alterovitz S A 1994 Solid State Electronics 37 119

    [13]

    Kay L E, Tang T W 1991 J. Appl. Phys. 70 1483

    [14]

    Manku T, Nathan A 1992 IEEE Trans. E D 39 2082

    [15]

    Chen Z M, Wang J N 1999 Foundation of Material and Physics of semiconductors (Beijing: Science Press) p224 (in Chinese) [陈治明、王建农1999 半导体器件的材料物理学基础(北京:科学出版社)第224页]

    [16]

    Kondekar P N 2005 IEEE Conference on Electron Devices and solid-state circuits (China, Hong Kong) p551

    [17]

    Shenoy P M, Bhalla A, Dolny G M 1999 International Symposium on Power Semiconductor Devices & ICs(Canada, Toronto) p99

    [18]

    Ma L, Gao Y 2009 Acta Phys. Sin. 58 529 (in Chinese) [马 丽、高 勇 2009 物理学报 58 529]

    [19]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂、耿振海、段宝兴、贾护军、余 涔、任丽丽 2010 物理学报 59 566]

  • [1] 姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯. 基于生物阻抗谱的舌体肿瘤组织识别方法. 物理学报, 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [2] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [3] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [4] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [5] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [8] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [9] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [10] 刘静, 郭飞, 高勇. 超结硅锗碳异质结双极晶体管机理研究与特性分析优化. 物理学报, 2014, 63(4): 048501. doi: 10.7498/aps.63.048501
    [11] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [12] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 碲化镉薄膜太阳能电池电学特性参数分析. 物理学报, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [13] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [14] 杨盛谊, 杜文树, 齐洁茹, 娄志东. 基于NPB的垂直构型有机发光晶体管的光电特性研究. 物理学报, 2009, 58(5): 3427-3432. doi: 10.7498/aps.58.3427
    [15] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性. 物理学报, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [16] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [17] 杨洪琼, 朱学彬, 杨高照, 李林波, 宋献才. 用于n,γ混合场的新型脉冲中子探测器研究. 物理学报, 2004, 53(10): 3321-3325. doi: 10.7498/aps.53.3321
    [18] 刘 明, 刘 宏, 何宇亮. 纳米硅/单晶硅异质结二极管的I-V特性. 物理学报, 2003, 52(11): 2875-2878. doi: 10.7498/aps.52.2875
    [19] 雷家荣, 袁永刚, 赵 林, 赵敏智, 崔高显. 快中子堆n,γ混合场中γ光子注量的测量研究. 物理学报, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
    [20] 陈進光. P-N结二极管中的散粒噪声与热噪声. 物理学报, 1965, 21(2): 383-389. doi: 10.7498/aps.21.383
计量
  • 文章访问数:  5440
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-07
  • 修回日期:  2010-07-29
  • 刊出日期:  2011-02-05

n,p柱宽度对超结SiGe功率二极管电学特性的影响

  • 1. (1)西安理工大学电子工程系,西安 710048; (2)西安理工大学应用物理系,西安 710048
    基金项目: 陕西省教育厅专项科研项目(批准号:09JK640)资助的课题.

摘要: 结合SiGe材料的优异性能与超结结构在功率器件方面的优势,提出了一种超结SiGe功率二极管.该器件有两个重要特点:一是由轻掺杂的p型柱和n型柱相互交替形成超结结构,取代传统功率二极管的n-基区;二是阳极p+区采用很薄的应变SiGe材料.该二极管可以克服常规Si p+n-n+功率二极管存在的一些缺陷,如阻断电压增大的同时,正向导通压降随之增大,反向恢复时间也变长.利用二维器件模拟软件MEDICI仿真

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回