搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子星中简并电子气体的临界磁化

王兆军 吕国梁 朱春花 张军

引用本文:
Citation:

中子星中简并电子气体的临界磁化

王兆军, 吕国梁, 朱春花, 张军

Critical magnetization of degenerate electronic system in neutron star

Lv Guo-Liang, Wang Zhao-Jun, Zhang Jun, Zhu Chun-Hua
PDF
导出引用
  • 中子星内部的电子处于高度简并或完全简并的状态,电子磁矩(包括内禀磁矩和朗道反磁矩)的取向不是随机的,而是呈现出极强的磁化行为.考虑了磁化后的磁诱导方程要改写,改写后的方程添加了新的磁场生成项,更重要的改变是等效磁扩散系数变小了(顺磁情况),在临界情况(等效扩散系数等于零),磁场在磁生成项的作用下增加直到抑制机理出现,朗道反磁矩就是在这个时候变得越来越重要.磁场增加的最终结果使中子星局域磁场成为振荡的,对外看来有可能成为磁星.
    Degenerate electronic Fermi system with intrinsic (spin) magnetic moment and Landau diamagnetic moment of the electrons in a neutron star interior is magnetized. Taking the magnetizing effect into consideration, the magnetic induced equation must be changed: the resulting equation has an additional magnetic induction term and a magnetic diffusion coefficient that is different from the original one for plasma. When effective magnetic diffusion coefficient equals critical value ( zero) the fully degenerate electronic system approaches a new phase. In this phase, the magnetic field of neutron star will become very large until other mechanisms suppress the increasing of the field in the neutron star lowered crust. For a stable or de Hass-Van Alphen oscillatory state, it is possible for the neutron star to become a magnetar .
    • 基金项目: 国家自然科学基金(批准号:10963003)资助的课题.
    [1]

    Anderson P, Itoh N 1975 Nature 256 25

    [2]

    Ruderman M, Zhu T H, Chen K Y 1998 Astrophysical Journal 492 267

    [3]

    Alpar M A, Cheng K S, Pines D 1989 Astrophysical Journal 346 823

    [4]

    Radhakrishnan V, Manchester R N 1969 Nature 222 228

    [5]

    Lyne A G, Rrichard R S 1987 Monthly Notices of the Royal Astronomical Society 229 223

    [6]

    Wang N, Manchester R N, Pace R T, Bailes M, Kaspi V M, Stappers B W, Lyne A G 2000 Monthly Notices of the Royal Astronomical Society 317 843

    [7]

    Dai Z G,Lu T,Peng Q H 1993 Acta Phys. Sin. 42 1210 [戴子高、陆 埮、彭秋和 1993 物理学报 42 1210]

    [8]

    Pacini F 1967 Nature 216 567

    [9]

    Gold T 1968 Nature 218 731

    [10]

    Ostriker J P, Gunn J E 1969 Astrophysical Journal 157 1395

    [11]

    Manchester R N 2004 Science 567 542

    [12]

    Kouvelioton C 1998 Nature 393 235

    [13]

    Kaspi V M 2003 Astrophysical Journal 588 93

    [14]

    Thompson C, Duncan R C 1995 Monthly Notices of the Royal Astronomical Society 275 255

    [15]

    Woods P M, Thompson C 2006 in Compact Stller X-ray Source (Cambridge: Cambridge University) pp547—586

    [16]

    Haberl H 2007 Astrophysica and Space Science 308 181

    [17]

    Gil J, Melikidze G, Geppert U 2003 Astronomy & Astrophysics 407 315

    [18]

    Ruderman M 2005 arXiv: 0510623

    [19]

    Angle J P R 1981 Astrophysical Journal 45 457

    [20]

    Thompson C, Duncan R C 1993 Astrophysical Journal 408 194

    [21]

    Geppert U 2009 In Neutron Stars and Pulsars (Volume. 1) (Berlin: Springer) p319—352

    [22]

    Geppert U, Rheinhardt M 2006 Astronomy & Astrophysics 456 639

    [23]

    Urpin V, Levshakov S 1986 Monthly Notices of the Royal Astronomical Society 219 703

    [24]

    Peng Q H, Luo Z Q 2006 Chinese Astronomy and Astrophysics 248 253

    [25]

    Peierls R E 1933 Z. Phys. 81 186

    [26]

    Spitzer L 1956 in Physics of Fully Ionized Gases ( New York: Inter Science)

    [27]

    Brandenburg A, Kandaswamy S 2005 arXiv: 0405052V2

    [28]

    Pauli W 1927 Z. Phys. 41 81

    [29]

    Landau L D, Lifshitz E M 1980 in Statistical Physics (New York: Pergamon Press)

    [30]

    Ghosh P 2007 in Rotation and Accretion Powered Pulsars (New Jersey : World Scientific)

    [31]

    Douchin F, Haensel P 2000 Phys. Lett. B 485 107

    [32]

    Landau L D, Lifshitz E M 1977 in Quanturn Mechanics (New York: Pergamon Press)

    [33]

    Johson M H, Lippmann B A, Harding A K 1949 Phys. Rev.76 828

    [34]

    Harding A K, Lai D 2006 arXiv: 0606674V2

    [35]
  • [1]

    Anderson P, Itoh N 1975 Nature 256 25

    [2]

    Ruderman M, Zhu T H, Chen K Y 1998 Astrophysical Journal 492 267

    [3]

    Alpar M A, Cheng K S, Pines D 1989 Astrophysical Journal 346 823

    [4]

    Radhakrishnan V, Manchester R N 1969 Nature 222 228

    [5]

    Lyne A G, Rrichard R S 1987 Monthly Notices of the Royal Astronomical Society 229 223

    [6]

    Wang N, Manchester R N, Pace R T, Bailes M, Kaspi V M, Stappers B W, Lyne A G 2000 Monthly Notices of the Royal Astronomical Society 317 843

    [7]

    Dai Z G,Lu T,Peng Q H 1993 Acta Phys. Sin. 42 1210 [戴子高、陆 埮、彭秋和 1993 物理学报 42 1210]

    [8]

    Pacini F 1967 Nature 216 567

    [9]

    Gold T 1968 Nature 218 731

    [10]

    Ostriker J P, Gunn J E 1969 Astrophysical Journal 157 1395

    [11]

    Manchester R N 2004 Science 567 542

    [12]

    Kouvelioton C 1998 Nature 393 235

    [13]

    Kaspi V M 2003 Astrophysical Journal 588 93

    [14]

    Thompson C, Duncan R C 1995 Monthly Notices of the Royal Astronomical Society 275 255

    [15]

    Woods P M, Thompson C 2006 in Compact Stller X-ray Source (Cambridge: Cambridge University) pp547—586

    [16]

    Haberl H 2007 Astrophysica and Space Science 308 181

    [17]

    Gil J, Melikidze G, Geppert U 2003 Astronomy & Astrophysics 407 315

    [18]

    Ruderman M 2005 arXiv: 0510623

    [19]

    Angle J P R 1981 Astrophysical Journal 45 457

    [20]

    Thompson C, Duncan R C 1993 Astrophysical Journal 408 194

    [21]

    Geppert U 2009 In Neutron Stars and Pulsars (Volume. 1) (Berlin: Springer) p319—352

    [22]

    Geppert U, Rheinhardt M 2006 Astronomy & Astrophysics 456 639

    [23]

    Urpin V, Levshakov S 1986 Monthly Notices of the Royal Astronomical Society 219 703

    [24]

    Peng Q H, Luo Z Q 2006 Chinese Astronomy and Astrophysics 248 253

    [25]

    Peierls R E 1933 Z. Phys. 81 186

    [26]

    Spitzer L 1956 in Physics of Fully Ionized Gases ( New York: Inter Science)

    [27]

    Brandenburg A, Kandaswamy S 2005 arXiv: 0405052V2

    [28]

    Pauli W 1927 Z. Phys. 41 81

    [29]

    Landau L D, Lifshitz E M 1980 in Statistical Physics (New York: Pergamon Press)

    [30]

    Ghosh P 2007 in Rotation and Accretion Powered Pulsars (New Jersey : World Scientific)

    [31]

    Douchin F, Haensel P 2000 Phys. Lett. B 485 107

    [32]

    Landau L D, Lifshitz E M 1977 in Quanturn Mechanics (New York: Pergamon Press)

    [33]

    Johson M H, Lippmann B A, Harding A K 1949 Phys. Rev.76 828

    [34]

    Harding A K, Lai D 2006 arXiv: 0606674V2

    [35]
  • [1] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响. 物理学报, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [2] 龚武坤, 郭文军. 混合中子星内强子-夸克退禁闭相变. 物理学报, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [3] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束. 物理学报, 2019, 68(18): 181102. doi: 10.7498/aps.68.20190477
    [5] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响. 物理学报, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [6] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级. 物理学报, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [7] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [8] 孙旭东, 陈菊华, 王永久. 磁荷对中子星质量半径比的约束. 物理学报, 2013, 62(16): 160401. doi: 10.7498/aps.62.160401
    [9] 丁炯, 张宏, 童勤业. 蝙蝠听觉神经系统如何在复杂环境中识别昆虫. 物理学报, 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [10] 杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉. 磁性量子元胞自动机拐角结构的理论模拟和实验. 物理学报, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [11] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化. 物理学报, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [12] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [13] 张宏, 刘淑芳, 钱鸣奇, 童勤业. 神经系统的简并性与序空间编码分析. 物理学报, 2009, 58(10): 7322-7329. doi: 10.7498/aps.58.7322
    [14] 张 洁, 刘门全, 魏丙涛, 罗志全. 强磁场中修正URCA过程的中微子产能率. 物理学报, 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [15] 张约品, 王现英, 林更琪, 李 震, 李佐宜, 沈德芳, 干福熹. GdFeCo/DyFeCo交换耦合两层薄膜磁化方向转变的研究. 物理学报, 2004, 53(2): 614-619. doi: 10.7498/aps.53.614
    [16] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究. 物理学报, 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [17] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质. 物理学报, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
    [18] 戴子高, 陆埮, 彭秋和. 中子星内部非奇异-奇异夸克物质的相变. 物理学报, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [19] 胡响明. 简并量子拍激光. 物理学报, 1992, 41(11): 1782-1788. doi: 10.7498/aps.41.1782
    [20] 王青德, 陆埮. π凝聚态中的弱过程对中子星振动的阻尼效应. 物理学报, 1985, 34(7): 892-900. doi: 10.7498/aps.34.892
计量
  • 文章访问数:  5942
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-13
  • 修回日期:  2010-07-15
  • 刊出日期:  2011-02-05

中子星中简并电子气体的临界磁化

  • 1. (1)西安交通大学理学院应用物理系,西安 710049; (2)新疆大学物理学院,乌鲁木齐 830046
    基金项目: 国家自然科学基金(批准号:10963003)资助的课题.

摘要: 中子星内部的电子处于高度简并或完全简并的状态,电子磁矩(包括内禀磁矩和朗道反磁矩)的取向不是随机的,而是呈现出极强的磁化行为.考虑了磁化后的磁诱导方程要改写,改写后的方程添加了新的磁场生成项,更重要的改变是等效磁扩散系数变小了(顺磁情况),在临界情况(等效扩散系数等于零),磁场在磁生成项的作用下增加直到抑制机理出现,朗道反磁矩就是在这个时候变得越来越重要.磁场增加的最终结果使中子星局域磁场成为振荡的,对外看来有可能成为磁星.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回