搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究

陈仲生 杨拥民

引用本文:
Citation:

悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究

陈仲生, 杨拥民

Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams

Chen Zhong-Sheng, Yang Yong-Min
PDF
导出引用
  • 研究了利用系统非线性来提高悬臂梁压电振子宽带低频振动能量俘获效率的随机共振机理,通过增加一对矩形永磁铁对传统线性悬臂梁压电振子结构进行了改进,结果揭示:在外部非线性磁力作用以及合适的磁铁间距条件下,这种外加磁力悬臂梁压电振子会构成一个双稳系统,在外部宽带低频随机振动源激励下发生随机共振现象,且发生随机共振时的输出电压明显增大,从而可以扩展悬臂梁压电振子的共振频率范围、提高低频振动能量的转化输出.
    A stochastic resonance mechanism of improving wideband and low frequency vibration energy harvesting of piezoelectric cantilever beam (PCB) is studied using the system nonlinearity. By adding a pair of rectangular permanent magnets, the structure of standard piezoelectric cantilever beam is improved. Results reveal that the improved PCB may be a bistable system under a nonlinear magnetic force and an appropriate distance between two magnets. Then a stochastic resonance phenomenon will happen by the input of wideband and low frequency stochastic vibrations. Under the condition of stochastic resonance, the electrical output of the improved PCB increases greatly. So the proposed method will be useful for extending the resonant band and improving the electrical output of a standard PCB.
    • 基金项目: 国家自然科学基金(50805142)资助的课题.
    [1]

    Robert B 2009 Sensor Review 3 194

    [2]

    Roundy S 2005 J. Intel. Mat. Syst. Str. 16 809

    [3]

    Williams C B, Yates R B 1996 Sens. Actuators A 52 8

    [4]

    Stephen N G 2006 J. Sound Vib. 293 409

    [5]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131

    [6]

    Erturk A, Inman D J 2008 J. Intel. Mat. Syst. Str. 19 1311

    [7]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137(in Chinese) [代显智、文玉梅、李 平、杨 进、江小芳 2010 物理学报59 2137]

    [8]

    Minazaraa E, Vasica D, Costaa F, Poulin G 2006 Ultrasonics 44 699

    [9]

    Wen Z Y, Wen Z Q, He X F, Liao H Y, Liu H T 2008 Chin. J. Mech. Eng. 44(11) 75(in Chinese)[温志渝、温中泉、贺学锋、廖海洋、刘海涛 2008 机械工程学报 44(11) 75]

    [10]

    Fauve S, Heslot F 1983 Phys. Rev. Lett. 97A 5

    [11]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张 莉、刘 立、曹力 2010 物理学报 59 1494]

    [12]

    Shu Y C, Lien I C 2006 Smart Mater. Struct. 3 1499

    [13]

    Lin M, Fang L M, Zheng Y J 2009 Chin. Phys. B 18 1725

    [14]

    Leng Y G, Wang T Y, Guo Y, Wu Z Y 2007 Acta Phys. Sin. 56 30 (in Chinese) [冷永刚、王太勇、郭 焱、吴振勇 2007 物理学报56 30]

    [15]

    Wang Y 2007 J. Magn. Mater. Dev. 38(5) 49 (in Chinese)[王 瑜 2007 磁性材料及器件 38(5) 49]

  • [1]

    Robert B 2009 Sensor Review 3 194

    [2]

    Roundy S 2005 J. Intel. Mat. Syst. Str. 16 809

    [3]

    Williams C B, Yates R B 1996 Sens. Actuators A 52 8

    [4]

    Stephen N G 2006 J. Sound Vib. 293 409

    [5]

    Roundy S, Wright P K 2004 Smart Mater. Struct. 13 1131

    [6]

    Erturk A, Inman D J 2008 J. Intel. Mat. Syst. Str. 19 1311

    [7]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137(in Chinese) [代显智、文玉梅、李 平、杨 进、江小芳 2010 物理学报59 2137]

    [8]

    Minazaraa E, Vasica D, Costaa F, Poulin G 2006 Ultrasonics 44 699

    [9]

    Wen Z Y, Wen Z Q, He X F, Liao H Y, Liu H T 2008 Chin. J. Mech. Eng. 44(11) 75(in Chinese)[温志渝、温中泉、贺学锋、廖海洋、刘海涛 2008 机械工程学报 44(11) 75]

    [10]

    Fauve S, Heslot F 1983 Phys. Rev. Lett. 97A 5

    [11]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494 (in Chinese) [张 莉、刘 立、曹力 2010 物理学报 59 1494]

    [12]

    Shu Y C, Lien I C 2006 Smart Mater. Struct. 3 1499

    [13]

    Lin M, Fang L M, Zheng Y J 2009 Chin. Phys. B 18 1725

    [14]

    Leng Y G, Wang T Y, Guo Y, Wu Z Y 2007 Acta Phys. Sin. 56 30 (in Chinese) [冷永刚、王太勇、郭 焱、吴振勇 2007 物理学报56 30]

    [15]

    Wang Y 2007 J. Magn. Mater. Dev. 38(5) 49 (in Chinese)[王 瑜 2007 磁性材料及器件 38(5) 49]

计量
  • 文章访问数:  9468
  • PDF下载量:  1678
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-06
  • 修回日期:  2010-10-29
  • 刊出日期:  2011-07-15

/

返回文章
返回