搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段重频过模返波振荡器实验研究

吴洋 金晓 马乔生 李正红 鞠炳全 苏昶 许州 唐传祥

引用本文:
Citation:

X波段重频过模返波振荡器实验研究

吴洋, 金晓, 马乔生, 李正红, 鞠炳全, 苏昶, 许州, 唐传祥

Experimental study on X-band repetitively oversized backward wave oscillator

Wu Yang, Jin Xiao, Ma Qiao-Sheng, Li Zheng-Hong, Ju Bing-Quan, Su Chang, Xu Zhou, Tang Chuan-Xiang
PDF
导出引用
  • 根据两腔振荡器和返波管的特点研制了过模结构返波振荡器, 该器件主要由调制腔和换能腔(慢波结构)两部分组成. 调制腔既是电子束的预调制腔, 也是微波谐振反射腔, 它同换能腔形成一个过模微波谐振腔,经调制腔调制后的电子束在换能腔中实现束波能量转换. 根据加速器的电子束参数(束压为1 MV,束流为20 kA)设计了一个X波段的高功率微波器件,2.5维粒子模拟程序模拟得到微波频率为8.25 GHz,输出功率为5.70 GW. 用超导磁体作为引导磁场,单次运行输出微波功率为5.20 GW,微波频率为(8.250.
    A new type of high power microwave device is developed based on bitron and backward wave oscillator. The device is composed of two parts: the modulation cavity and the extraction cavity (which is similar to slow wave structure). The modulation cavity acts as electron beam modulator and microwave reflector, which forms a microwave resonator in combination of the extraction cavity. The electron is modulated when it passes through the modulation cavity, and the high power microwave is generated when the modulated beam passes through the extraction cavity. An X-band high power microwave device is designed for a 20 GW accelerator, and the simulation results are frequency 8.25 GHz and output power 5.70 GW. Using superconducting magnet as guiding magnet, a microwave power of 5.20 GW at X-band (frequency (8.250.01)GHz) is obtained in single pulse mode. The radiation power is 5.06 GW when the repetition rate is 30 Hz, and the pulse length is 13.8 ns.
    [1]

    Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]

    [2]

    Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106

    [3]
    [4]

    Freund H P 2000 IEEE Trans. Plasma Sci. 28 748

    [5]
    [6]

    Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]

    [7]
    [8]

    Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]

    [9]
    [10]

    Nation J A 1970 Appl. Phys. Lett. 17 491

    [11]
    [12]

    Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232

    [13]
    [14]

    Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278

    [15]
    [16]

    Agee F J 1998 IEEE Trans. Plasma Sci. 26 235

    [17]
    [18]

    Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525

    [19]
    [20]

    Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518

    [21]
    [22]
    [23]

    Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550

    [24]

    Li Z H 2008 Appl. Phys. Lett. 92 541

    [25]
    [26]
    [27]

    Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462

    [28]

    Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652

    [29]
  • [1]

    Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]

    [2]

    Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106

    [3]
    [4]

    Freund H P 2000 IEEE Trans. Plasma Sci. 28 748

    [5]
    [6]

    Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]

    [7]
    [8]

    Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]

    [9]
    [10]

    Nation J A 1970 Appl. Phys. Lett. 17 491

    [11]
    [12]

    Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232

    [13]
    [14]

    Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278

    [15]
    [16]

    Agee F J 1998 IEEE Trans. Plasma Sci. 26 235

    [17]
    [18]

    Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525

    [19]
    [20]

    Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518

    [21]
    [22]
    [23]

    Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550

    [24]

    Li Z H 2008 Appl. Phys. Lett. 92 541

    [25]
    [26]
    [27]

    Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462

    [28]

    Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652

    [29]
计量
  • 文章访问数:  2635
  • PDF下载量:  660
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-16
  • 修回日期:  2011-01-19
  • 刊出日期:  2011-04-05

X波段重频过模返波振荡器实验研究

  • 1. 清华大学工程物理系, 北京 100084;
  • 2. 中国工程物理研究院应用电子学研究所, 绵阳 621900

摘要: 根据两腔振荡器和返波管的特点研制了过模结构返波振荡器, 该器件主要由调制腔和换能腔(慢波结构)两部分组成. 调制腔既是电子束的预调制腔, 也是微波谐振反射腔, 它同换能腔形成一个过模微波谐振腔,经调制腔调制后的电子束在换能腔中实现束波能量转换. 根据加速器的电子束参数(束压为1 MV,束流为20 kA)设计了一个X波段的高功率微波器件,2.5维粒子模拟程序模拟得到微波频率为8.25 GHz,输出功率为5.70 GW. 用超导磁体作为引导磁场,单次运行输出微波功率为5.20 GW,微波频率为(8.250.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回