搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni54Fe19Ga27单晶的形状记忆和超弹性

柳祝红 马星桥

引用本文:
Citation:

Ni54Fe19Ga27单晶的形状记忆和超弹性

柳祝红, 马星桥

Shape memory effect and superelasticity in single crystal Ni54Fe19Ga27

Liu Zhu-Hong, Ma Xing-Qiao
PDF
导出引用
  • 本文研究了单晶Ni54Fe19Ga27不同方向的形状记忆效应、超弹性和磁性. 研究发现,单晶样品具有良好的双向形状记忆效应.不同晶体学方向的相变应变随着热循环次数的变化而改变. 在外应力作用下,通过应力诱发马氏体相变,样品在[001],[110],[111]方向分别产生了3.3%, 2% 和3%的可回复应变平台.磁性测量结果表明马氏体的磁晶各向异性能约为4.8× 105 erg/cm3,远远小于变体孪生所需机械应力能,因此磁场的作用是使磁矩发生转动而不是使孪晶界移动, 成功揭示了不能在NiFeGa中获得大磁感生应变的物理根源.
    Shape memory effect and superelasticity are studied in this paper. At room temperature, perfect strain plateaus of 3.3%, 2% and 3% are obtained in the [001], [110] and [111] directions. The energies required to induce the martensitic transformation in different crystallographic directions are estimated from the stress-strain results. Each of the magnetization curves in the martensitic phase indicates that a magnetic anisotropy energy density Ku = (1/2)MsHa =4.8× 105 erg/cm3, which is far smaller than the mechanical driving force for variants twinning. This interpretes why only a little magnetic field induced strain in NiFeGa alloy has been observed so far.
    • 基金项目: 国家自然科学基金(批准号:51001010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51001010).
    [1]

    Ullakko K, Huang J K, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [2]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [3]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [4]

    Fujita A, Fukamich. K, Gejima F, Kainuma R, Isshida K 2001 Appl. Phys. Lett. 77 3054

    [5]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [6]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [7]

    Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K, Ishida K 2002 Appl. Phys. Lett. 81 5201

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2002 Appl. Phys. Lett. 82 424

    [9]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [10]

    Zheng H X, Liu J, Xia M X, Li J G 2005 Acta Phys. Sin. 54 1719 (in Chinese) [郑红星,刘剑,夏明许,李建国 2005 物理学报 54 1719]

    [11]

    Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K 2003 Appl. Phys. Lett. 83 4993

    [12]

    Murakami Y, Shindo D, Oikawa K, Kainuma R, Ishida K 2003 Appl. Phys. Lett. 82 3695

    [13]

    Sutou Y, Kamiya N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 84 1275

    [14]

    Yu S Y, Liu H Y, Qu J P, Li Y X, Liu Z H, Chen J L, Dai X F, Wu G H 2006 Acta Phys. Sin. 55 3022 (in Chinese) [于淑云,刘何燕,曲静萍,李养贤,柳祝红,陈京兰,代学芳,吴光恒 2006 物理学报 55 3022]

    [15]

    Sehitoglu H, Jun J, Zhang X, Karaman I, Chumlyakov Y, Maier H J, Gall K 2001 Acta Mater. 49 3609

    [16]

    Masdeu F, Pons J, Segui C, Cesari E, Dutkiewicz J 2005 J. Magn. Magn. Mater. 290-291 816

    [17]

    Cui Y T, Zhu Y B, Wang W L 2004 Acta Phys. Sin. 53 861 (in Chinese) [崔玉亭,朱亚波,王万录 2004 物理学报 53 861]

    [18]

    O’Handley R C 1998 J. Appl. Phys. 83 3263

  • [1]

    Ullakko K, Huang J K, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [2]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [3]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [4]

    Fujita A, Fukamich. K, Gejima F, Kainuma R, Isshida K 2001 Appl. Phys. Lett. 77 3054

    [5]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [6]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [7]

    Oikawa K, Ota T, Ohmori T, Tanaka Y, Morito H, Fujita A, Kainuma R, Fukamichi K, Ishida K 2002 Appl. Phys. Lett. 81 5201

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2002 Appl. Phys. Lett. 82 424

    [9]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [10]

    Zheng H X, Liu J, Xia M X, Li J G 2005 Acta Phys. Sin. 54 1719 (in Chinese) [郑红星,刘剑,夏明许,李建国 2005 物理学报 54 1719]

    [11]

    Morito H, Fujita A, Fukamichi K, Kainuma R, Ishida K 2003 Appl. Phys. Lett. 83 4993

    [12]

    Murakami Y, Shindo D, Oikawa K, Kainuma R, Ishida K 2003 Appl. Phys. Lett. 82 3695

    [13]

    Sutou Y, Kamiya N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 84 1275

    [14]

    Yu S Y, Liu H Y, Qu J P, Li Y X, Liu Z H, Chen J L, Dai X F, Wu G H 2006 Acta Phys. Sin. 55 3022 (in Chinese) [于淑云,刘何燕,曲静萍,李养贤,柳祝红,陈京兰,代学芳,吴光恒 2006 物理学报 55 3022]

    [15]

    Sehitoglu H, Jun J, Zhang X, Karaman I, Chumlyakov Y, Maier H J, Gall K 2001 Acta Mater. 49 3609

    [16]

    Masdeu F, Pons J, Segui C, Cesari E, Dutkiewicz J 2005 J. Magn. Magn. Mater. 290-291 816

    [17]

    Cui Y T, Zhu Y B, Wang W L 2004 Acta Phys. Sin. 53 861 (in Chinese) [崔玉亭,朱亚波,王万录 2004 物理学报 53 861]

    [18]

    O’Handley R C 1998 J. Appl. Phys. 83 3263

计量
  • 文章访问数:  2569
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-04
  • 修回日期:  2011-05-11
  • 刊出日期:  2012-01-05

Ni54Fe19Ga27单晶的形状记忆和超弹性

  • 1. 北京科技大学物理系, 北京 100083
    基金项目: 

    国家自然科学基金(批准号:51001010)资助的课题.

摘要: 本文研究了单晶Ni54Fe19Ga27不同方向的形状记忆效应、超弹性和磁性. 研究发现,单晶样品具有良好的双向形状记忆效应.不同晶体学方向的相变应变随着热循环次数的变化而改变. 在外应力作用下,通过应力诱发马氏体相变,样品在[001],[110],[111]方向分别产生了3.3%, 2% 和3%的可回复应变平台.磁性测量结果表明马氏体的磁晶各向异性能约为4.8× 105 erg/cm3,远远小于变体孪生所需机械应力能,因此磁场的作用是使磁矩发生转动而不是使孪晶界移动, 成功揭示了不能在NiFeGa中获得大磁感生应变的物理根源.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回