搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过冷Ni-P合金的凝固行为

黄起森 刘礼 韦修勋 李金富

引用本文:
Citation:

过冷Ni-P合金的凝固行为

黄起森, 刘礼, 韦修勋, 李金富

Solidification behaviors of undercooled Ni-P alloys

Huang Qi-Sen, Liu Li, Wei Xiu-Xun, Li Jin-Fu
PDF
导出引用
  • 以揭示共晶系合金在不同过冷度下凝固时初生相的选择规律和凝固组织形成机理为目的, 用熔融玻璃净化和循环过热相结合的方法, 将Ni100-xPx(x=18, 19, 19.6, 20, 21, 原子百分比)合金过冷至平衡液相线以下不同的温度, 用高速红外测温仪记录了试样的凝固冷却曲线, 详尽分析了试样的凝固组织.结果表明, 过冷Ni-P合金快速凝固过程中析出的初生相为α-Ni/Ni3P耦合共晶时, 整个凝固过程中仅出现一次再辉, 在所形成的异常共晶组织中α-Ni颗粒大小分布均匀;而当某一共晶相优先析出时, 另外一相需要在残留液相中重新形核, 致使凝固过程中出现两次再辉, 相应形成颗粒相大小截然不同的两类异常共晶组织;据此绘制了Ni-P合金初生相为共生共晶的区域. Ni-P合金中α-Ni的生长动力学明显快于Ni3P, 使得在大过冷度下过共晶合金也以α-Ni作为初生相进行凝固.
    In order to gain an insight into the primary phase selection and solidification structure formation while undercooled eutectic alloys solidify, Ni100-xPx (x=18, 19, 19.6, 20, 21, atomic percent) alloy melts are undercooled to different temperatures below the equilibrium liquidus. The recalescence behavior associated with rapid solidification is monitored by a high-speed infrared pyrometer, and the solidification structure is analyzed systematically. When α-Ni/Ni3P regular eutectic forms as the primary phase during rapid solidification, single recalescence event takes place. In the resulting anomalous eutectic, fine granular grains of α-Ni are distributed uniformly in the Ni3P matrix. When the primary phase is one of the eutectic phases, however, there is a second recalescence event following the first one, resulting from nucleation of the other phase in the remaining liquid and the subsequent rapid eutectic growth. In this case, there are two types of granular grains whose sizes are significantly different from those in the anomalous eutectics. Finally, a coupled growth zone of eutectics is determined. At large undercoolings, α-Ni rather than Ni3P solidifies as the primary phase even in the Ni-P hyper-eutectic alloys due to its rapider growth kinetics.
    • 基金项目: 国家自然科学基金 (批准号: 50874073)和国家重点基础研究发展计划 (批准号: 2011CB610405) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50874073) and the National Basic Research Program of China (Grant No. 2011CB610405).
    [1]

    Li G, Gao Y P, Liu R P 2007 J. Non-Cryst. Solids 353 4199

    [2]

    Peng L H, Gui H M, Li C, Jiang D L 2011 Chin. Phys. B 20 060701

    [3]

    Dong Z F, Ma Y H, Lu K 1994 Scripta Metall. Mater. 31 81

    [4]

    Lin S Z, Hei Z K 1984 Acta Phys. Sin. 33 302 (in Chinese) [林树智, 黑祖昆 1984 物理学报 33 302]

    [5]

    Weil R, Lee J H, Kim P K 1989 Plat. Surf. Finish 76 62

    [6]

    Paseka I 2008 Electrochim. Acta 53 4537

    [7]

    Abdel Hameed R M, Fekry A M 2010 Electrochim. Acta 55 5922

    [8]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏柄波 2007 物理学报 56 4804]

    [9]

    Li J F, Jie W Q, Zhao S, Zhou Y H 2007 Metall. Mater. Trans. A 38 1806

    [10]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 J. Cryst. Growth 311 1387

    [11]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [12]

    Pu J, Feng W J, Xiao J Z, Gan Z H, Yui H Y, Cui K 2003 J. Cryst. Growth 256 139

    [13]

    Huang Q S, Liu L, Li J F, Zhou Y H 2010 J. Phase Equilib. Diffus. 31 532

    [14]

    Wu Y, Piccone T Y, Shiohara Y, Kurz M 1987 Metall. Trans. A 18 915

    [15]

    Lu S Y, Li J F, Zhou Y H 2007 J. Cryst. Growth 309 103

    [16]

    Lee K L, Nash P 1991 Phase Diagrams of Binary Nickel Alloys (Ohio: ASM International) p2833

    [17]

    Li J F, Li X L, Liu L, Lu S Y 2008 J. Mater. Res. 23 2139

    [18]

    Yang C, Gao J, Zhang Y K, Kolbe M, Herlach D M 2011 Acta Meter. 59 3915

    [19]

    Zhang Z Z, Song G S, Yang G C, Zhou Y H 2000 Prog. Nat. Sci. 10 54 (in Chinese) [张振忠, 宋广生, 杨根仓, 周尧和 2000 自然科学进展 10 54]

    [20]

    Wei B, Herlach D M, Feuerbacher B, Sommer F 1993 Acta Metall. Mater. 41 1801

    [21]

    Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E 2004 Appl. Phys. Lett. 84 4029

    [22]

    Tan H, Zhang Y, Ma D, Feng Y P, Li Y 2003 Acta Mater. 51 4551

    [23]

    Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 39 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 物理学报 39 7431]

  • [1]

    Li G, Gao Y P, Liu R P 2007 J. Non-Cryst. Solids 353 4199

    [2]

    Peng L H, Gui H M, Li C, Jiang D L 2011 Chin. Phys. B 20 060701

    [3]

    Dong Z F, Ma Y H, Lu K 1994 Scripta Metall. Mater. 31 81

    [4]

    Lin S Z, Hei Z K 1984 Acta Phys. Sin. 33 302 (in Chinese) [林树智, 黑祖昆 1984 物理学报 33 302]

    [5]

    Weil R, Lee J H, Kim P K 1989 Plat. Surf. Finish 76 62

    [6]

    Paseka I 2008 Electrochim. Acta 53 4537

    [7]

    Abdel Hameed R M, Fekry A M 2010 Electrochim. Acta 55 5922

    [8]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏柄波 2007 物理学报 56 4804]

    [9]

    Li J F, Jie W Q, Zhao S, Zhou Y H 2007 Metall. Mater. Trans. A 38 1806

    [10]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 J. Cryst. Growth 311 1387

    [11]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [12]

    Pu J, Feng W J, Xiao J Z, Gan Z H, Yui H Y, Cui K 2003 J. Cryst. Growth 256 139

    [13]

    Huang Q S, Liu L, Li J F, Zhou Y H 2010 J. Phase Equilib. Diffus. 31 532

    [14]

    Wu Y, Piccone T Y, Shiohara Y, Kurz M 1987 Metall. Trans. A 18 915

    [15]

    Lu S Y, Li J F, Zhou Y H 2007 J. Cryst. Growth 309 103

    [16]

    Lee K L, Nash P 1991 Phase Diagrams of Binary Nickel Alloys (Ohio: ASM International) p2833

    [17]

    Li J F, Li X L, Liu L, Lu S Y 2008 J. Mater. Res. 23 2139

    [18]

    Yang C, Gao J, Zhang Y K, Kolbe M, Herlach D M 2011 Acta Meter. 59 3915

    [19]

    Zhang Z Z, Song G S, Yang G C, Zhou Y H 2000 Prog. Nat. Sci. 10 54 (in Chinese) [张振忠, 宋广生, 杨根仓, 周尧和 2000 自然科学进展 10 54]

    [20]

    Wei B, Herlach D M, Feuerbacher B, Sommer F 1993 Acta Metall. Mater. 41 1801

    [21]

    Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E 2004 Appl. Phys. Lett. 84 4029

    [22]

    Tan H, Zhang Y, Ma D, Feng Y P, Li Y 2003 Acta Mater. 51 4551

    [23]

    Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 39 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 物理学报 39 7431]

  • [1] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制. 物理学报, 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [2] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [3] 欧阳世根. 过冷水溶液中的空间光孤子. 物理学报, 2017, 66(9): 090505. doi: 10.7498/aps.66.090505
    [4] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [5] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [6] 吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长. 物理学报, 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [7] 曹斌, 林鑫, 黄卫东. 远场来流条件下过冷熔体球晶生长的稳定性. 物理学报, 2011, 60(6): 066403. doi: 10.7498/aps.60.066403
    [8] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响. 物理学报, 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [9] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [10] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [11] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [12] 朱耀产, 王锦程, 杨根仓, 杨玉娟. 三种变速条件下共晶生长的多相场法模拟. 物理学报, 2007, 56(9): 5542-5547. doi: 10.7498/aps.56.5542
    [13] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [14] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [15] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [16] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [17] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
    [18] 陈立凡, 陈熙琛. Al-Cu-Fe二十面体准晶的深过冷研究. 物理学报, 1996, 45(1): 169-176. doi: 10.7498/aps.45.169
    [19] 刘俊明. 层状共晶定向凝固. 物理学报, 1992, 41(5): 861-868. doi: 10.7498/aps.41.861
    [20] 常昕, 张修睦, 杨奇斌, 郭可信. 非共格孪晶界面位移矢量的测定与分析. 物理学报, 1982, 31(8): 1135-1140. doi: 10.7498/aps.31.1135
计量
  • 文章访问数:  4233
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-02-09
  • 刊出日期:  2012-08-05

过冷Ni-P合金的凝固行为

  • 1. 上海交通大学材料科学与工程学院, 金属基复合材料国家重点实验室, 上海 200240
    基金项目: 国家自然科学基金 (批准号: 50874073)和国家重点基础研究发展计划 (批准号: 2011CB610405) 资助的课题.

摘要: 以揭示共晶系合金在不同过冷度下凝固时初生相的选择规律和凝固组织形成机理为目的, 用熔融玻璃净化和循环过热相结合的方法, 将Ni100-xPx(x=18, 19, 19.6, 20, 21, 原子百分比)合金过冷至平衡液相线以下不同的温度, 用高速红外测温仪记录了试样的凝固冷却曲线, 详尽分析了试样的凝固组织.结果表明, 过冷Ni-P合金快速凝固过程中析出的初生相为α-Ni/Ni3P耦合共晶时, 整个凝固过程中仅出现一次再辉, 在所形成的异常共晶组织中α-Ni颗粒大小分布均匀;而当某一共晶相优先析出时, 另外一相需要在残留液相中重新形核, 致使凝固过程中出现两次再辉, 相应形成颗粒相大小截然不同的两类异常共晶组织;据此绘制了Ni-P合金初生相为共生共晶的区域. Ni-P合金中α-Ni的生长动力学明显快于Ni3P, 使得在大过冷度下过共晶合金也以α-Ni作为初生相进行凝固.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回