搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气阻力对完全非弹性蹦球动力学行为的影响

姜泽辉 韩红 李翛然 王福力

引用本文:
Citation:

空气阻力对完全非弹性蹦球动力学行为的影响

姜泽辉, 韩红, 李翛然, 王福力

Effect of air damping on dynemical behaviors of a completely inelastic bouncing ball

Jiang Ze-Hui, Han Hong, Li Xiao-Ran, Wang Fu-Li
PDF
导出引用
  • 一个在振动台面上蹦跳的小球具有复杂的运动形式, 如倍周期分岔和混沌. 如果球与台面间的碰撞是完全非弹性的, 则球的运动是倍周期的, 不存在混沌. 在分岔相图中, 鞍-结不稳定性引入平台结构, 同时存在倍周期轨道的密集区. 这里将研究空气的黏滞阻力对完全非弹性蹦球动力学行为的影响. 分析表明, 空气阻力很弱时, 分岔序列不受影响, 但分岔点的数值变大, 平台和密集区加宽. 空气阻力较大时, 平台与密集区重叠. 重叠区内原有产生倍周期运动的机理被破坏, 球的运动是混沌的.
    A ball dropped on a vertically vibrating table exhibits intricate dynamical behaviors including period-doubling bifurcations and chaos. If the collision between the ball and the table is completely inelastic, the motion of the ball is always periodic, and the plateaus caused by saddle-node instability and clumping structures for periodic trajectories occur in the bifurcation diagram. Here the effect of air damping on the dynamics of the ball with zero elasticity is analyzed. The air damping is treated as linear viscous one. It is shown that a weak air damping does not change the sequence of bifurcations, but makes the bifurcation points shift to larger values and broadens the transverse dimensions of the plateaus and the clumping zones in the diagrams. However, when the air damping becomes larger, overlapping between the plateaus and clumping zones takes place. In the overlapping section, the mechanism originally leading to periodic motion is destroyed, and chaos is introduced.
    • 基金项目: 国家自然科学基金(批准号: 10974038)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974038).
    [1]

    Fermi E 1949 Phys. Rev. 15 1169

    [2]

    Lichtenberg A J, Lieberman M A 1983 Regular and Stochastic Motion (New York: Springer-Verlag) p190

    [3]

    Pustylnikov L D 1978 Trans. Moscow Math. Society 2 1

    [4]

    Tufillaro N B, Albano A M 1986 Am. J. Phys. 54 939

    [5]

    Tufillaro N B, Abbott T, Reilly J 1992 An experimental approach to nonlinear dynamics and chaos (Redwood: Addison-Wesley)

    [6]

    Pierański P, Kowalik Z, Franaszek M 1985 J. Phys. 46 681

    [7]

    Celaschi S, Zimmerman R L 1987 Phys. Lett. A 120 447

    [8]

    Holmes P 1981 J. Sound Vibration 84 173

    [9]

    Bapat C, Sankar S, Popplewell N 1986 J. Sound Vibration 108 99

    [10]

    Tufillaro N B 1994 Phys. Rev. E 50 4509

    [11]

    Luo A C J, Han R P S 1996 Nonlinear Dynamics 1996 10 1

    [12]

    Barroso J J, Carneiro M V, Macau E E N 2009 Phys. Rev. E 79 026206

    [13]

    Lichtenberg A J, Lieberman M A, Cohen R H 1980 Physica D 1 291

    [14]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [15]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [16]

    Giusepponi S, Marchesoni F 2003 Europhys. Lett. 64 36

    [17]

    Giusepponi S, Marchesoni F, Borromeo M 2005 Physica A 351 142

    [18]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta. Phys. Sin. 58 7579 (in Chinese) [姜泽辉, 赵海发, 郑瑞华 2009 物理学报 58 7579]

    [19]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 1539

    [20]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [21]

    Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta. Phys. Sin. 54 5692 (in Chinese) [姜泽辉, 刘新影, 彭亚晶, 李建伟 2005 物理学报 54 5692]

    [22]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 43 417

    [23]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta. Phys. Sin. 56 3727 (in Chinese) [姜泽辉, 郑瑞华, 赵海发, 吴晶 2007 物理学报 56 3727]

    [24]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [25]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 011301

    [26]

    Pak H K, Van Doorn E, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [27]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [28]

    Paster J M, Maza D, Zuriguel I, Garcimartíin A, Boudet J F 2007 Physica D 232 128

    [29]

    Möbius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [30]

    Naylor M A, Swift M R, King P J 2003 Phys. Rev. E 68 012301

    [31]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [32]

    Klein M, Tsai L L, Rosen M S, Pavlin T, Candela D Walsworth R L 2006 Phys. Rev. E 74 010301

    [33]

    Liu C, Wang L, Wu P, Jia M 2010 Phys. Rev. Lett. 104 188001

    [34]

    Naylor M A, Sanchez P, Swift M R 2002 Phys. Rev. E 66 057201

    [35]

    Zhou Z G, Shi Y Y, Liu C B, Wang G H, Yang H J 2012 Acta. Phys. Sin. 61 200501 (in Chinese) [周志刚, 石玉仁, 刘丛波, 王光辉, 杨红娟 2012 物理学报 61 200501]

    [36]

    Jiang Z H, Guo B, Zhang F, Wang F L 2010 Acta. Phys. Sin. 59 8444 (in Chinese) [姜泽辉, 郭波, 张峰, 王福力 2010 物理学报 59 8444]

  • [1]

    Fermi E 1949 Phys. Rev. 15 1169

    [2]

    Lichtenberg A J, Lieberman M A 1983 Regular and Stochastic Motion (New York: Springer-Verlag) p190

    [3]

    Pustylnikov L D 1978 Trans. Moscow Math. Society 2 1

    [4]

    Tufillaro N B, Albano A M 1986 Am. J. Phys. 54 939

    [5]

    Tufillaro N B, Abbott T, Reilly J 1992 An experimental approach to nonlinear dynamics and chaos (Redwood: Addison-Wesley)

    [6]

    Pierański P, Kowalik Z, Franaszek M 1985 J. Phys. 46 681

    [7]

    Celaschi S, Zimmerman R L 1987 Phys. Lett. A 120 447

    [8]

    Holmes P 1981 J. Sound Vibration 84 173

    [9]

    Bapat C, Sankar S, Popplewell N 1986 J. Sound Vibration 108 99

    [10]

    Tufillaro N B 1994 Phys. Rev. E 50 4509

    [11]

    Luo A C J, Han R P S 1996 Nonlinear Dynamics 1996 10 1

    [12]

    Barroso J J, Carneiro M V, Macau E E N 2009 Phys. Rev. E 79 026206

    [13]

    Lichtenberg A J, Lieberman M A, Cohen R H 1980 Physica D 1 291

    [14]

    Mehta A, Luck J M 1990 Phys. Rev. Lett. 65 393

    [15]

    Luck J M, Mehta A 1993 Phys. Rev. E 48 3988

    [16]

    Giusepponi S, Marchesoni F 2003 Europhys. Lett. 64 36

    [17]

    Giusepponi S, Marchesoni F, Borromeo M 2005 Physica A 351 142

    [18]

    Jiang Z H, Zhao H F, Zheng R H 2009 Acta. Phys. Sin. 58 7579 (in Chinese) [姜泽辉, 赵海发, 郑瑞华 2009 物理学报 58 7579]

    [19]

    Gilet T, Vandewalle N, Dorbolo S 2009 Phys. Rev. E 79 1539

    [20]

    Wassgren C R, Brennen C E, Hunt M L 1996 J. Appl. Mech. 63 712

    [21]

    Jiang Z H, Liu X Y, Peng Y J, Li J W 2005 Acta. Phys. Sin. 54 5692 (in Chinese) [姜泽辉, 刘新影, 彭亚晶, 李建伟 2005 物理学报 54 5692]

    [22]

    Jiang Z H, Wang Y Y, Wu J 2006 Europhys. Lett. 43 417

    [23]

    Jiang Z H, Zheng R H, Zhao H F, Wu J 2007 Acta. Phys. Sin. 56 3727 (in Chinese) [姜泽辉, 郑瑞华, 赵海发, 吴晶 2007 物理学报 56 3727]

    [24]

    Melo F, Umbanhowar P B, Swinney H L 1995 Phys. Rev. Lett. 75 3838

    [25]

    Moon S J, Shattuck M D, Bizon C, Goldman D I, Swift J B, Swinney H L 2001 Phys. Rev. E 65 011301

    [26]

    Pak H K, Van Doorn E, Behringer R P 1995 Phys. Rev. Lett. 74 4643

    [27]

    Aoki K M, Akiyama T, Yamamoto K, Yoshikawa T 1997 Europhys. Lett. 40 159

    [28]

    Paster J M, Maza D, Zuriguel I, Garcimartíin A, Boudet J F 2007 Physica D 232 128

    [29]

    Möbius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [30]

    Naylor M A, Swift M R, King P J 2003 Phys. Rev. E 68 012301

    [31]

    Yan X, Shi Q, Hou M, Lu K, Chan C K 2003 Phys. Rev. Lett. 91 14302

    [32]

    Klein M, Tsai L L, Rosen M S, Pavlin T, Candela D Walsworth R L 2006 Phys. Rev. E 74 010301

    [33]

    Liu C, Wang L, Wu P, Jia M 2010 Phys. Rev. Lett. 104 188001

    [34]

    Naylor M A, Sanchez P, Swift M R 2002 Phys. Rev. E 66 057201

    [35]

    Zhou Z G, Shi Y Y, Liu C B, Wang G H, Yang H J 2012 Acta. Phys. Sin. 61 200501 (in Chinese) [周志刚, 石玉仁, 刘丛波, 王光辉, 杨红娟 2012 物理学报 61 200501]

    [36]

    Jiang Z H, Guo B, Zhang F, Wang F L 2010 Acta. Phys. Sin. 59 8444 (in Chinese) [姜泽辉, 郭波, 张峰, 王福力 2010 物理学报 59 8444]

  • [1] 韩红, 姜泽辉, 李翛然, 吕晶, 张睿, 任杰骥. 器壁滑动摩擦力对受振颗粒体系中冲击力倍周期分岔过程的影响. 物理学报, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [2] 张晓芳, 周建波, 张春, 毕勤胜. 非线性切换系统的动力学行为分析. 物理学报, 2013, 62(24): 240505. doi: 10.7498/aps.62.240505
    [3] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理. 物理学报, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [4] 李冠林, 李春阳, 陈希有, 牟宪民. 电流模式SEPIC变换器倍周期分岔现象研究. 物理学报, 2012, 61(17): 170506. doi: 10.7498/aps.61.170506
    [5] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证. 物理学报, 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [6] 董昭, 李翔. 离散时间序列的网络模体分析. 物理学报, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [7] 姜泽辉, 郭波, 张峰, 王福力. 摩擦力对非弹性蹦球倍周期运动的影响. 物理学报, 2010, 59(12): 8444-8450. doi: 10.7498/aps.59.8444
    [8] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [9] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象. 物理学报, 2009, 58(6): 3772-3779. doi: 10.7498/aps.58.3772
    [10] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [11] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [12] 杨 汝, 张 波, 褚利丽. 开关变换器倍周期分岔精细层次结构及其普适常数研究. 物理学报, 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [13] 王学梅, 张 波, 丘东元. 不连续导电模式DC-DC变换器的倍周期分岔机理研究. 物理学报, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [14] 姜泽辉, 郑瑞华, 赵海发, 吴 晶. 完全非弹性蹦球的动力学行为. 物理学报, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [15] 冯进钤, 徐 伟, 王 蕊. 随机Duffing单边约束系统的倍周期分岔. 物理学报, 2006, 55(11): 5733-5739. doi: 10.7498/aps.55.5733
    [16] 唐驾时, 欧阳克俭. logistic模型的倍周期分岔控制. 物理学报, 2006, 55(9): 4437-4441. doi: 10.7498/aps.55.4437
    [17] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析. 物理学报, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [18] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [19] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动. 物理学报, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [20] 谢 勇, 徐健学, 康艳梅, 胡三觉, 段玉斌. 可兴奋性细胞混沌放电区间的识别机理. 物理学报, 2003, 52(5): 1112-1120. doi: 10.7498/aps.52.1112
计量
  • 文章访问数:  3369
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-09
  • 修回日期:  2012-07-16
  • 刊出日期:  2012-12-05

空气阻力对完全非弹性蹦球动力学行为的影响

  • 1. 哈尔滨工业大学物理系, 哈尔滨 150001
    基金项目: 国家自然科学基金(批准号: 10974038)资助的课题.

摘要: 一个在振动台面上蹦跳的小球具有复杂的运动形式, 如倍周期分岔和混沌. 如果球与台面间的碰撞是完全非弹性的, 则球的运动是倍周期的, 不存在混沌. 在分岔相图中, 鞍-结不稳定性引入平台结构, 同时存在倍周期轨道的密集区. 这里将研究空气的黏滞阻力对完全非弹性蹦球动力学行为的影响. 分析表明, 空气阻力很弱时, 分岔序列不受影响, 但分岔点的数值变大, 平台和密集区加宽. 空气阻力较大时, 平台与密集区重叠. 重叠区内原有产生倍周期运动的机理被破坏, 球的运动是混沌的.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回